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Abstract  
The analysis of regulatory documentation on cyclic tests of gas cylinders and literature sources on cyclic strength 
and durability dispersion depending on the stress level is conducted. Normal and log–normal distributions 
describing durability dispersion are considered. A model of probabilistic assessment of possible cylinder failure 
under cyclic loads depending on the number of cylinders tested by a predetermined number of cycles was 
constructed. The cylinders tested should not "destroy" – lose their sealing. Dependencies for taking into account 
the scale factor are given.  
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1. General terms  
 
When approving a new type of high–pressure gas cylinder, in order to prove its operational 
reliability, along with a fairly wide range of tests, cyclic tests with internal hydraulic pressure 
are also carried out. In most cases, these tests are carried out once, at the very beginning. But 
according to some regulatory documents (RD), in order to confirm the stability of 
manufacturing quality, cyclic tests are also carried out during the established production of 
cylinders, for example, one of a batch, or one of five or ten consecutive batches. Detailed test 
procedures can be found in the relevant regulatory documents for the manufacture of certain 
cylinders. Some provisions of cyclic tests are common for a number of RD.  
Cylinders are divided by design type: CNG–1 – metal; CNG–2 – metal liner reinforced with 
wire or continuous fibers (ring winding); CNG–3 – metal liner reinforced with continuous fibers 
(full winding, also called cocoon winding); CNG–4 – continuous fibers, with a non–metallic 
liner (fully composite). CNG–3 type cylinders are divided into two subtypes: in one, the liner 
takes on part of the design load (more than 5%), in the other, it serves only for sealing. The 
requirements for cyclic testing of fully composite cylinders (CNG–4), in which the only metal 
parts are embedded elements, are essentially the same as for other cylinders. However, unlike 
the others, they are checked for gas permeability in the process of cyclic testing, after a certain 
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number of cycles. Some of the cycles for such cylinders, as well as for CNG–3 type cylinders 
with a non–load–sharing liner, are carried out under vacuum. 
When approving a new type of cylinder, 2–3 cylinders are subjected to cyclic tests. These tests 
are usually carried out with a test hydraulic pressure, which in most cases is 1.5 times the 
working pressure. Cylinders with an unlimited service life must withstand 12,000 cycles of test 
pressure, or according to some regulatory documents 24,000 cycles of a pressure, that could be 
achieved in the cylinder (taking into account the properties of the gases used) at a temperature 
of 65 o C. The tests must be passed without unsealing (failure due to cracks or leakage due to a 
fistula). In the case of high proof pressure, tests may be carried out with a pressure equal to 2/3 
of the proof pressure. In this case, the cylinders must withstand 80,000 cycles without unsealing. 
For cylinders with a limited service life, the tests consist of two consecutive parts. In the second 
part, unsealing of the cylinder is allowed due to the formation of a fistula, which occurs due to 
a fatigue crack, and not a fracture due to quasi–static failure. In some cases, additional cyclic 
tests are carried out for several cylinders with artificial defects, but with a pressure lower than 
the proof pressure and a smaller number of cycles. According to some regulatory documents, a 
fistula may form after a certain period of operation. Also, cyclic tests are carried out on 
cylinders after drop tests onto a plate, after hitting a sharp edge (and at negative temperatures), 
and, if necessary, on cylinders after tests in salt water. Additional cyclic pressure tests are also 
carried out at extreme temperatures and after short–term exposure to an open flame. Sometimes, 
after cyclic tests, including additional ones, cylinders are brought to destruction by static 
pressure with determination of safety factors. Since high–pressure cylinders are objects of 
increased danger, the range of their various tests is quite wide. More detailed information on 
the requirements for cyclic tests for various regulatory documents is given in [1].  
High–pressure gas cylinders are subject to cyclic testing. Low–pressure cylinders, such as 
welded steel cylinders for 1.6 MPa for liquefied hydrocarbon gases, etc., are not subject to 
cyclic load testing. It should be noted that cyclic tests with internal pressure are also not carried 
out in the pipeline industry, since the wall thickness safety factor is deliberately high there.  
The working pressure in the cylinder is set by the gas pressure at a temperature of 15 o C. 
According to some outdated RD 20 o C. At the maximum operating temperature of the cylinder, 
the pressure in it should not exceed the proof pressure. As we can see, the working pressure of 
the cylinder is very conditional. The proof pressure is the designed pressure of the cylinder. The 
stresses in the walls at such a pressure should not exceed 90% of the flow stress. At the same 
time, the proof pressure for cylinders made of a material whose ratio of temporary resistance to 
the flow stress is more than 2 can be reduced to 1.25 of the working pressure. For cylinders 
made in the USA, the coefficient 5/3 is common. 
In a number of RD, cyclic tests are carried out with test pressure. And, obviously, in the case 
of non–destruction, a greater guarantee of cyclic durability and reliability is obtained in 
comparison with those RD, where tests are carried out at the level of working pressure. It is 
also important that at higher loads, the probability of detecting quasi–static destruction inherent 
in soft loading increases – destruction due to opening (fracture), which is unacceptable for 
cylinders. And such destruction can occur in the case of imperfections in design, for example, 
shapes of concave bottoms, places of transition from one geometric shape to another, etc. Local 
defects, inclusions, cavities, cracks, etc. that operate under conditions of hard loading can also 
lead to unsealing, but it mainly occurs within the fatigue mechanism due to the formation of a 
fistula, which is less dangerous compared to a rupture. 
Fatigue durability (fatigue life) of the structure N f  – the total number of cycles from the 

beginning of the test to failure, at stresses above the fatigue limit. It consists of the number of 
cycles before the formation of a crack of a predetermined size (durability to crack) and 
survivability (residual durability). There is an opinion that when testing metals, the shape of the 
loading curve does not affect fatigue durability. Fatigue failure is determined only by the 
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highest and lowest stresses [2]. Experiments also show, that effect of the frequency of stress 
change is insignificant. Exceptions are tests at high temperatures, as well as under the influence 
of a corrosive environment. Under these conditions, a decrease in frequency leads to some 
decrease in fatigue resistance [2]. Residual stresses act similarly to average cycle stresses [3]. 
With increasing stresses, N f  decreases.  

In fatigue testing, there are two significantly different types of loading: loading with a given 
load range – soft loading (movements are not kinematically limited); loading with a given 
deformation range – hard loading. Most common and most consistent with the mass service 
conditions of structural parts in operation are tests with a given load range. With hard loading, 
there is no accumulation of deformation, which eliminates the possibility of quasi–static failure. 
In this case, all materials fail according to the fatigue type with the formation of cracks [4].  
In no other type of failure do strength characteristics depend on such a large number of factors 
as in fatigue failure. The main ones are: characteristics of the material and manufacturing 
technology; design of the product/part; loading conditions; environment in contact with the 
product/part [5]. In low–cycle loading, the determining factor is the relationship between 
complexes of basic mechanical properties and durability, rather than the relationship between 
individual basic mechanical properties and durability [6]. The basis for probabilistic approaches 
is the fact that the processes of accumulation of fatigue (cyclic) damage, leading to the initiation 
and subsequent development of fatigue (including low–cycle) cracks, are random in nature [6]. 
Under the same stress, the tested metal samples can show the number of cycles before failure 
that differ by one or even two orders of magnitude [3]. In the works of many authors, a 
considerable spread of cyclic deformation characteristics is observed, in many cases 
significantly exceeding the spread of the basic mechanical properties. The statistical nature of 
the fatigue failure process predetermines the dispersion of fatigue test results to a greater extent 
than other types of tests [5]. The coefficients of variation for survivability are not less than 0.2 
– 0.5 [6]. According to reference data, during durability tests, the coefficient of variation 
reaches values of 0.2 – 0.3. Data dispersion is also observed when determining conventional 
strength limits, flow strength and other characteristics, but with a relatively low coefficient of 
variation of 0.01 – 0.05.  
In fatigue tests, the dispersion of durability decreases with increasing stress level [5, 6, 7, 8]. 
For this reason, the dispersion of durability decreases with increasing stress concentration level 
[5]. With increasing stress level, the coefficient of durability variation also decreases [6, 9, 10]. 
With increasing level of acting stress, a transition from grain–wise fracture to grain boundaries 
fracture is observed, location and nature of fracture may change [5]. In field tests, the amplitude 
range at the most dangerous points is very difficult to determine reliably, in contrast to the 
number of cycles at which the fracture occurred.  
The dispersion largely depends on the shape and size of the samples. With an increase of across 
dimensions of tested metal samples, the dispersion in durability decreases [3, 5]. It has been 
established experimentally that small metal samples are stronger than large ones. In samples of 
large cross–sections, compared to small ones, there is a greater probability of the presence of 
defects and dangerously stressed grains, which is associated with the statistical nature of the 
fatigue failure process [3].  

The standard safety factor for durability is equal 
[ ]

1 2N fnN N
=  to [11], where 1 2N f  is the 

number of cycles to failure with a probability of 0.5 (50%), is the median of the fatigue life 
distribution, [ ]N  is the maximum acceptable number of cycles at which the probability of 
failure is extremely low, practically zero. In practice, technical specifications (TS) is usually 
assume 10nN = , for certainty. Such factor value is applied to pressure vessels, pipelines, and 
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other products with a low initial stress concentration. For structural elements and machine parts 
with a deliberately high initial stress concentration, due to lower dispersion, 3.0nN =  is used 

[12]. When calculating aircraft engine components, for example, 5 10nN =  . If full–scale 
structures or full–scale models are subjected to testing under operational loads, then according 
to [12] 2.1nN ≥  is used. 
Taking into account the literature sources regarding the distribution of fatigue (cyclic) durability 
of experimental samples, most authors tend to the log–normal distribution law. In this case, the 
variation coefficient characterizing the dispersion can fluctuate within the region of 0.2...0.5. 
Using this distribution and the variation coefficient, for example 0.5 for cylinders (the worst 
one), it is possible to predict their cyclic durability based on the results of preliminary cyclic 
tests without destruction. The probability distribution of possible destruction depends on the 
number of cylinders on which the tests were conducted and on the number of loading cycles 
during these tests. The tested cylinders should not lose their tightness "fail" during the tests.  
The requirements specified in RD apply to cylinders with an uncontrolled, large number of 
cyclic loads during operation, which in turn can be unlimited. If the number of cyclic loads of 
cylinders during their operation is small and controlled, then RD requirements are too high. 
Therefore, for such cylinders, it is recommended to conduct cyclic tests with a smaller number 
of cycles, but this must be justified. This technique can be used as an express method, for 
example, in the case of an increase in test/working pressure. If this increase is justified by static 
strength. Or for cylinders that are not manufactured in compliance with any RD. This technique 
is based on cyclic tests with a small number of cycles that do not lead to failure. Of course, 
there are many methods for calculating cyclic strength, but this requires knowledge about 
geometry, mechanical properties, possible imperfections in geometry leading to stress 
concentration, etc. This paper does not consider methods for calculating cyclic strength.  
A detailed elaboration of the theory presented below is considered in [1]. All mathematical 
calculations, which are given in this paper without detailed proofs, are also given there. The 
dependencies given in the article for normal and log–normal distributions, as well as these 
distributions themselves, were verified using Monte Carlo method. The same applies to the 
theoretical distributions of their minimum values.  
 
2. Application of normal and log–normal laws to estimate the distribution 
of durability  
 
Let us consider a discrete random variable X , which is defined by its finite sample 

, , , , ,1 2x x x xi n   of n  elements. Regardless of the law of distribution of this random 

variable, the sample mathematical expectation (sample mean) M x  and sample mean square 

(standard) deviation xσ as the square root of the unbiased estimate of the sample variance are 
valid for it.  

 1

1

n
M xx ini

= ∑
=

, ( )21
1 1

n
x Mx i xn i

σ = −∑
− =

.  (1)  

 
The distribution function of a discrete variable X : ( ) ( )F x P X x= < , where ( )P X x<  is the 
probability that the variable X  takes a value less than a predetermined specific number x . For 
any random variable, discrete or continuous, the following is true: ( )0 1F x≤ ≤ . The more 
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elements in the sample, the more "reliably" the given characteristics determine the value X . If 
the value X  consists of an infinite number of elements, then when n ⇒∞  the sample tends to 
the general population. But there may be exceptions when the number of elements of the 
variable X  is finite, then this number will be the general population.  
Given values of M x , xσ  and the distribution law of a discrete random variable, it can be 
replaced by a continuous random variable with a larger functionality. A useful function, 
inherent only to continuous random variables, is the probability distribution density: 

( ) ( )dF x
f x

dx
= , where ( ) ( ) ( )

x
F x P X x f x dx

a
= < = ∫  is the distribution function for a continuous 

variable. The lower value of the integration interval a  is the lower boundary of the region of 
acceptable values of X . In case of a normal distribution a=−∞ , for a log–normal distribution 
(see below), this boundary is zero. The area under the curve ( )f x  is naturally equal to one. For 
discrete random variables, there is no probability distribution density function, since such 
random variables are not absolutely continuous functions. If ( )F x for a discrete variable is a 
step function, then for a continuous variable it is smooth. The mathematical expectation and 
variance (mean square deviation squared) of a continuous variable are determined by the 

following dependencies: ( )M xf x dxx
a

∞
= ∫ , ( ) ( )22 x M f x dxx x

a
σ

∞
= −∫ . Further, we will not 

specify whether this is a discrete or continuous variable, but will use the general mathematical 
apparatus.  
 
Additional equally important numerical characteristics of a random variable X .  
Mex – median – the value of a random variable X for which the value of the distribution 
function is 0.5 – the value dividing areas with 50 % probability. The number of sample 
elements, for a discrete variable, to the right and left of the median is approximately the same.  
Mox – mode – the value of a random variable X with the highest frequency – the value at 

which the maximum of the probability distribution density function is observed – ( )f x .  
Mx x xν σ= – coefficient of variation of a random variable X  (relative standard deviation).  

 
A conditional classification of samples based on the coefficient of variation is used: when 

0.1xν ≤  the sample is weakly variable, when 0.1 0.2xν≤ ≤  it is moderately variable, and 

when 0.2xν ≥  it is highly variable.  
For a normal distribution, the mathematical expectation, median, and mode coincide. It is worth 
noting that if we consider a sample, then the values of the median, mode, and variation 
coefficient will be sample values. It is clear that the more elements in the sample, or the closer 
the sample to the general population, the more "reliable" these values are. Based on the sample 
numerical characteristics obtained during the processing of test results, using additional 
mathematical apparatus, conclusions about the law of distribution of a random variable are 
made. Or which distribution low a random variable obtained by experimental methods most 
closely corresponds to. This requires large samples. After we have proven or guessed which 
distribution law the random variable corresponds to, we can use its mathematical apparatus to 
solve specific problems.  
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If the random variable X is distributed according to the normal law (Gaussian distribution), 
then its distribution density and distribution function are respectively equal to:  

( )
2

2

tef x
xσ π

−
= , ( ) ( )( )1 1

2
F x erf t=  , where the minus is taken for values located to the left of 

the mathematical expectation, 2t k=  is a positive value, k x M x xσ= −  are deviations from 

the mathematical expectation in standard deviations, and ( )erf t  is the Gaussian error function.  
To construct the density and distribution function of a value X distributed according to the 
normal law, as well as to perform various calculations, it is recommended to represent the x–
axis as x M kx xσ= ± , ( 0k > ). In this representation, the numerical values on the x–axis are 
symmetrical with respect to the mathematical expectation.  
Parameter ( )k x Mi x xσ= −  shows how many standard deviations the value xi  is from the 

mathematical expectation M x to the right or left, depending on the sign. In case of normal 

distribution ( ) ( ) ( )F x F k P X x≡ ≡ < . Value k can be represented as the result of the inverse 

normal distribution function ( )( )1k F P X x−= < . Values k  and ( )F k  are given in 
mathematical statistics reference tables.  
A log–normal distribution is a distribution of a strictly positive quantity W , ( 0W > ), whose 
logarithm ( )U ln W=  is normally distributed [13]. The values of U  can be both greater than and 

less than zero. Element–wise, it can be represented as ( )u ln w= , or uw e= , where w is an 
element of set W , and u is an element of set U . The distribution density and the distribution 
function of the quantity U  are naturally equal to the density and the normal distribution 
function. The log–normal distribution is more convenient to use than the normal distribution.  
In case of continuous representation, from the relationship of quantities U and W , and since 

dw ue w
du

= = , we have ( ) ( ) ( )
( ) ( ) 1dF wdF w du duuf w f u f u

dw du dw dw w
= = = = . Substituting what was 

found for the distribution density into the distribution function of quantity W  we obtain 

( ) ( ) ( ) ( ) ( )
0 0

w w udwF w f w dw f u f u du F u
w

= = = =∫ ∫ ∫
−∞

. From this, it can be seen that distribution 

functions of quantities U and W coincide.  
We will take the mathematical expectation and variance of a random variable (W ), that follows 
a log–normal distribution, from the textbook [13]:  

2

2
uMuM ew

σ
+

= , 
2 222 1

Mu u ue ew
σ σ

σ
 +  = × −
 
 

, where Mu and 2
uσ  are mathematical 

expectation and variance of quantity U . Dividing 2
wσ by 2Mw , we obtain { }

2 2
2 12

w uewMw

σ σ
ν= = −

, hence:  
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 ( )
2

21 12
wln lnu wMw

σ
σ ν

 
 = + = +
 
 

,  (3)  

where Mw w wν σ=  is the coefficient of variation of the quantity W .  

From the expression for Mw  we find  

( ) ( ) ( )
2 1 2 21 1

2 2
uM ln M ln M ln ln Mu w w w w w

σ
ν ν = − = − + = + 

 
.  

It is clear that ( ) ( )M M ln Mu wln w= ≠  and ( ) ( )lnu wln wσ σ σ= ≠ .  

Dependencies, obtained for a continuous variable, also work for a limited sampling distribution, 
provided that it is actually distributed according to a lognormal law. We need quantity U  to 
use its distribution function as for a normal law, nothing more.  
 
Distribution density and distribution function of a log–normally distributed variable W  are 
equal respectively:  

( )

( )( )2
2221

2 2

ln w Mu
teuf w e

w wu u

σ
σ π σ π

−
−

−
= ⋅ = , 

( )
( )

( )( ) ( )1 1 1 1
2 2 22

ln w MuF w erf erf t F u
uσ

 −
 = = =
 
 

  , where the minus sign is taken for values to 

the left of the mathematical expectation of the logarithm, parameter t  (see above).  
 
The median and mode of the lognormal distribution are defined by the following expressions: 

2
21 12

M wuMe e M Mw w w wMw

σ
ν= = + = + , ( )

2 32 1
Mu uMo e Mw w w

σ
ν

−
= = + . The 

condition is met: Mo Me Mw w w< < . It is useful to point out that mathematical expectation of 
the logarithm is directly converted into the median of the lognormal distribution.  
 
The coefficient of variation of the variable ( )U ln W= , can be expressed in the following way:  

( ) ( )
( )

2 21 1

2 1

ln lnw wu
u M ln Meu wln Mw w

ν νσ
ν

ν

+ +
= = =

 + 
 

.  

With the variation coefficient wν  and therefore uν tending to zero, the lognormal distribution 
tends to normal, therefore median and mode approaches to mathematical expectation. It is worth 
noting that the greater the variation coefficient, the more Mow , Mew  and Mw  differ from 

each other. And also u wν ν<< , which gives advantages to the log–normal law.  
 



192 

If a random variable W  is really distributed according to a lognormal law, then it is sufficient 
to operate with the values Mw  and wσ  to determine all dependencies for it. These values can 
be found, according to the results of cyclic tests, using formulas (1). If we assume a normal 
distribution law, then we also use formulas (1).  
To construct the density and distribution function of a variable W distributed according to a 
lognormal law, as well as to perform various calculations, the x–axis can be taken as for the 

variable X  (see above), but it is more appropriate to represent it in the form uw e= , where 
u M ku uσ= ± . After substituting, we have,  

( ) ( )2 21 1
k

k ln lnM k M k w wu u u u uw e e e e Me e Me ew w
ν νσ σ

± 
± ⋅ + + ± ±

= = = ⋅ = ⋅ =  
  
 

. In this 

representation, numerical values for variable U on the x–axis are symmetrical with respect to 
median.  
 
As an illustration, Figure 1 shows the normal and lognormal distributions.  
 

 

Fig. 1. Normal and log–normal distributions with a mathematical expectation of 5700 and a variation 
coefficient of 0.5:  

Norm – normal distribution; L–Norm – lognormal distribution; 1 – for x M kx xσ= ± , 2 – for 
M ku uw e e

σ±
= ⋅ , 

values for the x–axis with deviations multiples of the standard deviation, where 3, 2, 1, 0,1, 2, 3k= − − − .  

 
The relationship between ku and kw  depends only on the coefficient of variation. 
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Taking 
M uu iku

uσ
−

= , it can be shown that in case of representation 
M ww ikw

wσ
−

= , it follows 

that 1
1

Mw
w ki w wν

=
−

and 
( )

( )
21 1

2 1

ln kw w w
ku

ln w

ν ν

ν

 − − + 
 =

+
.  

If we assume that 
Me ww ikw

wσ
−

= , then 1
1
2 1

Mw
wi kw w

w

ν
ν

=
−

+

also 
( )

21 1

2 1

ln kw w w
ku

ln w

ν ν

ν

 − − + 
 =

+
.  

 
3. Assessment of probability cylinder failure based on the results of testing 
their prototypes without failure  
 
The million cylinder problem. Let’s hypothetically assume that we have one million cylinders, 
each of which will be filled 10 times with the working pressure during operation – a small 
number of loading cycles. We need to conduct an experimental express test with some 
guarantee that all our cylinders will withstand the operational number of loads (10 times). We 
know nothing about the cylinders: material, maximum pressures, geometry, mechanical 
properties, stress concentration factors in most dangerous places, distribution of cyclic (fatigue) 
durability, literally, nothing. We only know that cylinders belong to the same type, and even 
better, to the same production batch. Cylinders have passed non–destructive testing and 
preliminary loading with a proof pressure that exceeds the operating pressure by some amount. 
Cyclic loading of randomly selected test cylinders will be carried out with a proof pressure. 
During the tests, the cylinders should not "fail". First, we load one cylinder with 10 pressure 
cycles. The result does not say much. If we give it a fivefold load, i.e. 50 cycles, and it does not 
fail, then there is some insignificant probability that our million cylinders will withstand 10 
cycles. If we load 2 cylinders with 50 cycles, and they do not fail, then the probability will be 
slightly higher than with only one cylinder. Let's imagine our thought experiment as a series of 
elements (number of cylinders – number of loading cycles): 1 – 10; 1 – 50; 2 – 50; 2 – 100; 3 – 
100; 4 – 100, etc. It is intuitively clear that the more cylinders involved in the tests, and the 
greater the number of their loadings with test pressure, the greater probability that our million 
cylinders will withstand 10 cycles with the working pressure.  
It is also intuitively clear that to increase this probability, one must either increase the number 
of cylinders in the tests or increase the number of their loading cycles. The question is how to 
estimate these probabilities.  
The issue of choosing cylinders for cyclic testing is also important. Random selection is not 
optimal. If we do conduct cyclic testing, it is better to choose the worst cylinders of all approved. 
Such cylinders can be those that have:  

- a higher coefficient of residual expansion under test pressure loading after production, 
or  

- greater elastic expansion (if the residual is unknown), or  
- a higher volume–to–weight ratio (if the residual and elastic expansions are unknown), 

or  
- there are some different, but acceptable defects.  

In accordance with some regulatory documents, elastic and residual expansion are estimated 
for cylinders. According to these criteria, cylinders are rejected both at the production stage and 
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during their periodic inspection. These criteria, in those RDs where they are provided, are 
applied to each cylinder when it is loaded with test pressure, i.e. 100 % control [1, 14, 15, 16].  
Probability that all out of n  the randomly selected numbers (elements) will be greater or less 

than median is 0,5n . As n increases, this probability decreases. For [ ]1, 2, 3, 4, 5n= , these 
probabilities will be respectively: 0.5; 0.25; 0.125; 0.0625; 0.03125. For example, we tested 3 
cylinders with a certain number of cycles, and they did not fail. Probability that this number of 
cycles will be greater than median is 12.5 %, for 5 cylinders, respectively, 3.125 %. In case of 
testing only one cylinder, it is clear – 50%.  
Since ( ) ( )F x P X x= < , where x is a given value, the probability that n  random numbers are 

simultaneously less than x is equal to the product of these probabilities, i.e.: ( )( )nF x . The 

probability that these n  numbers are simultaneously greater than x is equal to ( )( )1 nF x− . For 

simplicity, the function ( )F x  can be replaced by ( )F k , where ( )k x M x xσ= − . For example, 

х  can be the number of cycles to failure in case of a normal distribution or natural logarithm of 
the number of cycles to failure in case of a log–normal distribution. M x  and xσ  are 
mathematical expectation and standard deviation of the number of cycles to failure or the 

logarithm of the number of cycles to failure. Functions ( )( )nF k  and ( )( )1 nF k−  in case of a 

normal distribution, for [ ]1, 2, 3, 200n=  are shown in Figure 2, they are symmetrical to each 
other.  
 

 

Fig. 2. Functions ( )( )nF k and ( )( )1 nF k− in case of normal distribution, for [ ]1, 2, 3, 200n= .  

In case of testing one sample ( 1n= ), it is clear that function ( )( )nF k  coincides with the 

distribution function ( )F k , and ( )( )1 nF k−  is equal to ( )1 F k− . These functions sum up to 
one, for 1n= .  
Suppose we tested 3nc=  cylinders with Nt  number of test loading cycles without failure, and 
none of the cylinders “failed”. Further, such a case, in which we have not received failure during 
cyclic testing, be it a fracture or a fistula leading to loss of tightness, will be called a “successful” 
test. Another criterion can also be chosen as a successful test. For composite cylinders, this can 
be, for example, non–critical failure of fibers, non–peeling of the outer protective coating, etc. 
In this case, we know nothing about the real distribution of the number of cycles before failure. 
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If we assume that with our Nt  cycles we are in the median zone of the real distribution, then 

this probability is equal to ( )( ) ( )
3 3 31 1 0.5 0.5 0.125F Nt− = − = = , see Figure 2, curve 3 – a thin 

line. The probability that all three of them should already fail is also equal to 0.125, curve 3 – 
a thick line. If we assume that by some reason we ended up, for example, in the zone of 
mathematical expectation plus 1 standard deviation, without receiving a single destruction, then 
such a probability will generally be very low 

( )( ) ( )
3 3 31 1 0.841345 0.158655 0.003994F Nt− = − = = . Moreover, the probability that all three of 

them should already be destroyed is equal to ( )( )3 30.841345 0.595555F Nt = = .  

Let's assume that we have tested nc cylinders with a test [ ]N Nt >  number of loading cycles 

without failure, a "successful" test. If, when loading 1nc+  cylinder, it fails after a number of 

cycles equal to or less than Nt , then failing probability will be ( )1 1nc+ . As nc  increases, 

probability decreases. This number can be equated to the probability ( )P −  that this cylinder 

will not withstand Nt  the cycles, provided that all the previous ones have passed the tests, i.e.  

 ( ) ( ) ( )1 1P F N nt c= = +− . (4)  

Also, probability ( )P +  that 1nc+  cylinder will withstand Nt  cycles is 

( ) ( ) ( )1 1P F N n nt c c= − = ++ . These two probabilities sum up to one. It is worth noting that if 

1nc=  (one cylinder was tested), then the probability that the next cylinder will withstand the 
tests is 50 %. The values of the probability of failure and non–failure, depending on the number 
of cylinders tested, are shown in Figure 3a. Figure 3b shows the value of parameter k  (it is 
clear that k is negative), as a result of inverse normal distribution function from the values ( )P −

, ( )P + , which are mutually symmetric.  

It should be noted that instead of "cylinders" can also be some other full–scale samples or 
elements.  

 

Fig. 3. Probabilities of failure and non–failure and values of the inverse normal distribution function 
depending on the number of cylinders tested:  
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a – probabilities of failure ( )P − and non–failure ( )P + ; b – value of parameter k , as a result of 

inverse normal distribution function.  
 
Without actual values N f , one can guess that with an increase of the number of "successfully" 

tested cylinders nc , the conditional median 1 2N f , for which the probability of failure is 50%, 

shifts to the right w.r.t. Nt , see Figure 4. (This shift will be greater for larger variation 

coefficients). When testing only one cylinder, Nt and 1 2N f  coincide. The dots in Figure 4 

indicate the values for testing 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 cylinders (from right to left).  
 

 

Fig. 4. On the idea of cyclic testing of cylinders without failure.  

 
Having the values of Nt and nc , using formula (4), we obtain the probability of failure for 
these values – this probability is the value of the distribution function. Next, we find the value 
k as the value of inverse normal distribution function. We use absolute value of k  to avoid 
confusion with the sign. Given the variation coefficient wν , we find uσ  using (3). Then we 

calculate ( )M ln N ku t uσ= + and 
MuMe ew= . Given the value nN , we determine 

[ ]N Me nw N=  and [ ]*n N NN t=  – the test residual durability factor (experimentally 
confirmed).  
For a certain values of the number of cycles N , where 0 N Nt≤ ≤ ( N can act as [ ]N ), we can 

obtain the probability of failure ( ) ( )
( )M ln NuP F k FN

uσ

 −
= = − −  

 
. Expanding this expression 

in more detail, we obtain 

( ) ( ) ( ) ( )11 2 21 1
1

NtP F k F ln F ln lnw wN N nc
ν ν

      −   = = − − × + +  −     +      
.  

Since we agreed that parameter k  is positive, then when calculating the function ( )F k , we put 
a minus sign in front of k . If [ ]N N= , then ( ) ( )[ ]P PN N=− − .  
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By substituting according to formula (3): ( )2 1lnu wσ ν= + , we obtain dependencies 

( )
11 1

1
N N exp F F Pt uNnc

σ
     − −  = ⋅ −   −   +     

, and 

( )

1 1
1 1

nc NtF ln F P NNuσ

= −
    −+    −    

.  

From this setup and the probability of failure at a given number of cycles N  (i.e. [ ]N ), we can 
obtain: from the first – the number of test loading cycles Nt , at a certain number of tested 
cylinders nc ; from the second – the number of cylinders nc  that must be tested with a given 
number of test cycles Nt .  

In Figure 5 shows dependencies between [ ]*n N NN t=  and nc  for a lognormal distribution (

[ ]N  taken as N ) and different failure probabilities ( )[ ]P N− , with variation coefficients of 0.2 

and 0.5.  
 

 

Fig. 5. Relationship between the test durability safety factor for and the number of tested cylinders for 
different failure probabilities, with variation coefficients of a) 0.5 and b) 0.2. 

 
It should be noted that [ ]*n N NN t=  can also be less than 1. This occurs in cases where the 

given probability ( )[ ]P N−  is greater than ( ) ( ) ( )1 1P F N nt c= = +− .  

 
In case of a normal distribution, it is easy to show that ( )1M N kx t xν= − , (parameter k  here 

corresponds to Nt ), and [ ]N M nx N= . For N respectively (parameter k  corresponds to N ), 

we obtain ( ) ( ) 1M N NxP F k F FN M Mx x x x xν ν ν

   −
= = − = −   −    

   
, or 

( ) ( ) 1 1 11
1

NP F k F FN N nx t c xν ν

    −   = = − − + −     +    
. Worth noting that normal distribution 

should be used only in cases where 1k xν < .  
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Similarly, for a normal distribution, we can obtain 

( )

1 11
1

1 1

F
nc xN Nt

F P N
x

ν

ν

 − +  + =
 −+  − 

, and 

( )

1 1
1 11

nc NtF F P NN x xν ν

= −
   − + −  −     

. Worth noting that when calculating 

( )
1F P kN
 − = − 

 directly, the value is negative, and its absolute value must be less than 1 xν . 

The normal law gives "nice" results only for small values of the variation coefficient.  
 
Basically, another simplistic option is to use a linear dependence for the probability (see 

segmentCB in Figure 6a). In this case we have ( ) ( )1
NP N N nt c

=− +
 for a number of cycles N . 

The probability density function according to the linear law will be a line parallel to the x–axis 
(see segment ( )b  in Figure 6b).  
 
Figure 6 shows a hypothetical case where 3nc=  cylinders were tested for 600Nt =  cycles, 
variation coefficient is taken as 0.5w xν ν= = . The value of the distribution function for 3 

cylinders according to formula (4) is ( ) ( )600 1 3 1 0.25F = + = . Areas under the distribution 
density functions for normal and lognormal distributions to the left of 600Nt =  cycles are equal 

(see the line ( )a  in Figure 6b). These areas are also equal to the area of the rectangle bounded 
by the axes and lines ( )a  and ( )b . In this setup, for normal and lognormal laws, only the values 
of the distribution functions coincide at the value Nt , while the mathematical expectations and 
standard deviations do not coincide here.  
 

 

Fig. 6. Distributions when testing of 3 cylinders with 600 loading cycles with a variation coefficient of 0.5: 
( 600, 3, 0.5N nt c w xν ν= = = = ). Notations are similar to Figure 1.  
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Designing tests for a limited number of cycles, a technical and economic questions may arise. 
What is more reasonable: to load a larger number of cylinders with a smaller number of cycles 
or, conversely, a smaller number of cylinders with a larger number of cycles. This question is 
related to the cost of the cylinders that can no longer be used after testing, and the service life 
of the testing equipment, especially when it comes to high pressures. An important factor may 
also be the time that must be spent on cyclic loading and possible equipment repair.  
If the number of loading cycles N  less than Nt , it is clear that the probability of failure will 
be less than that determined by formula (4). Figure 7a shows the relation of the probability of 
failure on the number of loading cycles. For illustration, the dependences are given for cases 
when 1, 2, 3 and 10 cylinders were subjected to “successful” tests for 1200Nt =  cycles. The 
variation coefficient is taken to be equal to 0.5. The values for 1200N Nt= =  correspond to 
formula (4). The x–scale of these curves, unlike the y–scale, are proportional to each other. For 
example, multiplying the number of cycles for the curve 3nc=  by the coefficient 

872,58... 1200 , which corresponds to 0.72715…, it will coincide with the curve for 1nc= . 
Taking the median, i.e. the value Nt  for 1nc= , as 100 %, we find that in case of testing three 
cylinders, in order to obtain the same probabilities of failure with a small number of cycles, we 
only need to load them 72.715 % of the cycles. Let’s denote this percentage by ( ), %N . Figure 
7 b shows the failure probabilities w.r.t. the number of loading cycles taken as a percentage of 
the median. Relations are given for the lognormal and normal distribution laws with variation 
coefficients of 0.2 and 0.5. The dots indicate the values when testing cylinders 1, 2, 3, 4, 5, 10, 
20, 30, 40, 50, 100, (top to bottom). Comparing nc and ( ), %N , for lognormal and normal 
distributions, with different variation coefficients, we obtain exactly the same relations as in 
Figure 9, but in order to obtain ( ), %N  values on the scale *nN , we need to multiply by 10.  
 

 

Fig. 7. Probabilities of failure depending on the number of loading cycles:  

a – for a lognormal distribution with a variation coefficient equal to 0.5;  

b – for lognormal (bold), and normal (thin) distributions. For variation coefficients of 0.5 and 0.2.  
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Figure 8 shows the probabilities of cylinder failure depending on the number of loading cycles. 
The distributions are plotted for a “successful” test of three cylinders with 12,000 cycles, as 
recommended by many regulatory documents.  
 

 

Fig. 8. Probabilities of failure for normal and 
lognormal distributions depending on the 

number of loading cycles, for variation 
coefficients of 0.2, 0.3, 0.4, 0.5, when testing 3 

cylinders with 12,000 cycles:  

Norm – normal distribution; L–Norm – 
lognormal distribution.  

 

 
According to our model, with a "successful" test of one cylinder, we assume a tenfold reserve 
for durability * 10n nN N= = , (basically, there may be some other value). With an increase in the 

number of "successfully" tested cylinders, this coefficient ( *nN ) can certainly be reduced. 
Should be noted that none of the tested cylinders should "fail" with a number of cycles equal to 
Nt . Otherwise, other approaches should be used, for example, taking a smaller value for Nt .  
 
The test safety factor for durability for a lognormal distribution, can be rewritten as follows: 

[ ] ( ) ( )
*

2 1

N N n N n n nt t N t N N NnN kN Me ln N k uw k lnet ue we

σσ ν
= = = = =

+ ⋅ +
.  

Relation of the test coefficient of safety for durability (with the standard coefficient equal to 
10) to the number of tested cylinders for the variation coefficients 0.2, 03, 04, 0.5 is shown in 
Figure 9 with bold lines. For example, if 6 cylinders are tested and we use a lognormal 
distribution, then with a variation coefficient equal to 0.2 it is sufficient to load the cylinders 
with an eight–fold reserve *nN . With a variation coefficient 0.5 it is sufficient to have a six–
fold reserve for durability. There is no paradox here, since with a variation coefficient 0.5, the 
median will be further from the value Nt than with a coefficient of 0.2.  

In case of using normal distribution M N k N k Mx t x t x xσ ν= + = + . Hence ( )1M N kx t xν= − . 

Further [ ]N M nx N= , and [ ] ( )* 1n N N n kN t N xν= = − , see Figure 9, thin dotted lines. When 

using normal distribution law, values of the required reserves will be even lower.  
 
With an increase in the number of tested cylinders (case of "successful" tests), calculated test 
coefficient of safety for durability will decrease. But this decrease will occur at a slower rate. 
With an extremely large number of cylinders, it can reach one.  
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Fig. 9. Test safety factor for durability (with the standard equal to 10), in relation to the number of tested 
cylinders with variation coefficients of 0.2, 03, 0.4, 0.5: Bold solid lines for lognormal, thin dotted lines for 

normal distribution.  

 
Obviously, in our case, for the probability that 1nc+  cylinder will not withstand Nt  cycles 

( ) ( ) ( )1 1F N P nt c= = +− , see formula (4), and ( )
1k F P −=−  − 

. Hence we have 

( )( )1 1 1k F nc
−=− + . Statement ( )

1k F P −=−  − 
, where ( ) ( )1 1P nc= +− , is shown in Figure 

10a. If we consider ( )P − , we are to the left of the median, in this case the value k  is negative 

or equal to zero, but for convenience we take it by modulus, implying what is meant. It is clear 
that for normal and log–normal distributions the number of cycles corresponding to one k do 
not coincide.  
Probability that all nc  results of the cylinder tests will be less than or greater than a given 
number Nt , according to the probability of destruction ( )P −  for 1nc+  cylinders, in case of a 

normal distribution, is shown in Figure 10b. To avoid confusion, keep in mind that 
( ) ( ) ( )F N F k Pt ≡ ≡ − .  

Figure 10 shows values for testing 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 cylinders (from right to 
left).  

 

Fig. 10. Dependencies for the case of normal distribution:  

Functions: (a) ( )
1k F P −=−  − 

, where ( ) ( )1 1P nc= +−
; (b) ( )( )nF k and ( )( )1 nF k−  depending on ( )P −

.  
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Interesting fact: ( )
1 0.367879

nclim P
enc

  = = + →∞
 , and ( ) 0

nclim P
nc

  = − →∞
.  

It is important to note the following aspect. If, for some reason, we know the median of the 
durability distribution, then, in case of confidence that durability distribution obeys the 
lognormal law, standard durability safety factor can be taken as smaller than in case of a normal 
distribution. 
In cyclic testing of objects until failure, we obtain a certain discrete value ( N f ), elements of 

which are loading cycles ( n f ) that led to failure of the tested objects. (destruction of one test 

object is one element n f of the set N f ). Assuming a normal law of its distribution, we denote 

it by X ( X N f≡ ) with parameters M x , xσ , determined by formulas (1). Assuming a 

lognormal law, we denote it by W  (W N f≡ ) with parameters Mw  and wσ  also determined by 

formulas (1). Then, using the values Mw , wσ  we determine Mu  and uσ  of the value U , 
which is normally distributed.  
 
4. Distribution for minimum values, scale factor  
 
Suppose we have some continuous random variable X , a general population, which is 
described by parameters M x , xσ , and has a normal distribution with a distribution function 

( )F x and probability density function ( )f x . Consider it as initial distribution. Let us take 
discrete samples of n  elements from this general population. The number of samples of n  
elements is large enough. From each sample of n  elements we take the minimum value. We 
define the distribution function ( )F xmin  and the probability distribution density ( )f xmin  of 
the minimum values.  
Since the probability that n  randomly selected numbers (elements) are simultaneously greater 

than x , is equal to ( )( )1 nF x− , the distribution function of the minimum values looks like this: 

( ) ( )( )1 1 nF x F xmin = − − . Due to the fact that ( ) ( )dF x
f x

dx
= , therefore ( )

( )dF xminf xmin dx
= , 

hence ( ) ( )( ) ( )11 nf x n F x f xmin
−= − ⋅ , [17, 18].  

If 1n= , then, ( ) ( )F x F xmin =  and ( ) ( )f x f xmin = , so the distribution function and probability 
density function of the minimum values completely coincide with the original distribution 
functions. The same applies to the numerical parameters: mathematical expectation, mode, 
median and standard deviation.  

It should be noted that for maximum values ( ) ( )( )nF x F xmax =  and 

( ) ( )( ) ( )1nf x n F x f xmax
−= ⋅ . The dependencies for maximum values obey the same laws as 

the dependencies for minimum values.  
Functions ( )f xmin  and ( )f xmax , with a symmetric initial distribution, are symmetric to each 
other w.r.t M x – mathematical expectation of this initial distribution [17]. Distributions of 
extreme values themselves are not symmetric, even if the initial distribution is symmetric, see 
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Figure 12. If the initial distribution is bounded, then distribution of extreme values is also 
bounded by the same value [17].  
Consider the case when the initial distribution obeys the normal law. Let’s move from x  to k , 
and take into account only those values that are less than the mathematical expectation. The 
probability that all of random numbers from n  will simultaneously be greater than a certain 

value determined by k , equals to ( )( )1 nP F k= − − , (see Figure 11b). Therefore ( ) 11 nF k P− = −  

and, consequently ( )11 1 nk F P−=− − , (see Figure 11a).  

For the same k  we have 
1 11 2

1 2
n n

P P= , or 2 1
2 1

n n
P P= .  

Interesting to note that if in the formula ( )( )1 nP F k= − −  values k  are taken as a function of 

( )P + , i.e. ( )
1 1

1
nk F P F

n
  − −= =   + +   

, (see Figure 11c), we have: 

( )
1 11 1

1

nn nP F F P F F
n

        − −= − − = − −       + +         
. For n ⇒∞ , we have 

1 0.367879P
e

⇒ =  . For 1n= , it implies 0,5P= . If the values k  are taken as a function of ( )P −

, then ( )
111 1

1

n n
P F F P

n
     −= − = −     − +     

. Also for n ⇒∞ , we have 1P e⇒ .  

 

 

Fig. 11. Normal distribution, for x M x≤ : [ ]1, 2, 3, ... ,12n=  – elements.  
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In Figure 11 a, with probability P  close to 0.4, the calculated values are close to the values 
when k taken from ( )P − , see the formulas in Figure 10 a.  

It can be shown that, regardless of the initial distribution, the variation coefficient of minimum 

values is: 1 M Mmin x x min x
min x

x x x

σ
ν

σ ν σ

 −    
    = −

        
, where min xσ  is standard deviation 

of the minimum values, Mmin x  is mathematical expectation of the minimum values.  

It is useful to note that median of the minimum values Memin x , determines the 50 % 

probability of failure of the structure of n elements as a whole. Let’s equate the distribution 

function of the minimum values to 0.5: ( ) ( )( )1 1 0.5nF x F xmin = − − = , therefore ( ) 11 0.5 nF x− =  

hence ( ) 11 0.5 nF x = − . Moving from x to k , we have: ( )11 1 0.5 nk F−=− − . Hence, median of 

the distribution of deviations of minimum values from M x  related to xσ coincides with the 

value calculated by the formula ( )11 1 nk F P−=− − , at 0.5P= , i.e.: 

( )11 1 0.5
M MeM min x x min x nxMe F

x xσ σ

− −  −= = − 
  

. The median of minimum values Memin x

does not coincide with the mode Momin x and mathematical expectation Mmin x  of minimum 

values. 
When n  increases, min xσ  decreases, and Mmin x  passes into the region of smaller values, 

and also Memin x . Momin x . When 1n= , it implies: min x xσ σ=  and 

Me Mo M Mmin x min x min x x= = = .  

 

 

Fig. 12. Distributions of extreme values for the original normal distribution for number of elements 1, 3, 
12: Thin solid lines are for minimum values; thin dotted lines are for maximum values. Bold lines are for 

the main distribution. (for 800M x=  and 400xσ = ).  

 
Figure 13 shows the distributions of extreme values for a lognormal initial distribution for the 
number of elements 1, 3, 12.  
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Fig. 13. Distributions of extreme values for lognormal distribution for the number of elements 1, 3, 12: 
Thin solid lines are for minimum values; thin dotted lines are for maximum values. Bold lines are for the 

main distribution.  

 
For the distribution of minimum values of the lognormal distribution, using the Monte Carlo 

method, one can check that ( ) ( )( ) ( )11 nf w n F w f wmin
−= − ⋅ , where the argument of the 

probability density function ( )f w is ( )M ku u uw e e
σ±

= = , and the distribution function is 

( ) ( ) ( )F w F u F k≡ ≡ .  

( ) ( )( ) ( )11 nf u n F u f umin
−= − ⋅ , where the argument of the probability density function ( )f u

is u M ku uσ= ± , and the distribution function is ( ) ( )F u F k≡ . 

Also, 
Memin uMe emin w= , and 

20,5Mmin u min uM emin w
σ+

= .  

With all this, 
Mmin uM emin w≠ mind, ( )2 1lnmin u min wσ ν≠ +   

2 1Me Mmin w min w min wν≠ + , And 
2 222 1

Mmin u min u min ue emin w
σ σ

σ
 +  ≠ × −  
 

.  

Similarly, ( ) ( ) 1f w f u
w

= , we have ( ) ( ) 1f w f umin min w
= , where the arguments w and u are 

related by the dependency uw e= .  
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Distributions of the logarithm of minimum values of W  coincide with the distributions of the 
minimum values of U . Conversely, distributions of the exponent of minimum values of U , 
coincide with distributions of the minimum values of W . The same is true between the 
distributions of the values W  and U  themselves.  
 

 

Fig. 14. Distributions of minimum values for 24 elements with conditional 1000Mw= and 400wσ = :  

Thin – according to formulas for minimum values. Bold – under the assumption of lognormal distribution. 

 
The number of elements n  can act as n –multiplicity. And it is not an invariant value. The 
distribution of the minimum values of n  elements does not coincide with the lognormal law 
constructed from the minimum values, see Figure 14.  
Scale factor. Under conditions of constant stress–strain state (SSS), with an increase in the 
volume of the material being tested for fatigue life, the mathematical expectation, median and 
mode will shift to the area of smaller values. The standard deviation will decrease. This can be 
characterized as the influence of the scale factor.  
For example, we subject the same meter–long or five–meter–long pipes to cyclic testing. The 
pipes must be of small diameter to level out the edge effect from the bottoms. Radiators 
consisting of radiator sections can also serve as an example. Also, if we increase the diameter 
and wall thickness of the cylinder without changing the length, but provided that the ratio of 
diameter to thickness is maintained. The length of welded seams under identical loading 
conditions can also be considered.  
 
5. Conclusions  
 
1. During cyclic testing of cylinders, according to regulatory documentation, their quasi–static 
destruction is not permitted.  
2. When describing the dispersion of fatigue life (the number of cycles to failure), many authors 
recommend using a log–normal distribution. In this case, variation coefficient characterizing 
the dispersion can fluctuate in the range of 0.2...0.5.  
3. By using a variation coefficient of 0.5 in the calculations, we predict the worst case scenario. 
4. As the number of tested cylinders increases, and if they don’t fail, the fatigue life safety factor 
can be reduced.  
5. As the volume of the tested material increases, the fatigue life distribution shifts to lower 
values, and the standard deviation decreases.  
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