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Abstract 
The analysis of regulatory documentation on cyclic tests of gas cylinders and literature sources on cyclic strength and durability dispersion depending on the stress level is conducted. Normal and log-normal distributions describing durability dispersion are considered. A model of probabilistic assessment of possible cylinder failure under cyclic loads depending on the number of cylinders tested by a predetermined number of cycles was constructed. The cylinders tested should not "destroy" - lose their sealing. Dependencies for taking into account the scale factor are given. 
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Аннотация 
Проведен анализ нормативной документации касающейся циклических испытаний газовых баллонов, и литературных источников по циклической прочности и рассеянию долговечности в зависимости от уровня напряжений. Рассмотрены нормальное и логарифмически нормальное распределения, которыми описывают рассеяние долговечности. Построена модель вероятностной оценки возможного разрушения баллонов при циклических нагрузках в зависимости от количества заранее испытуемых баллонов наперед заданным количеством циклов. Испытуемые баллоны при этом не должны «разрушиться» - утратить герметичность. Приведены зависимости для учета масштабного фактора. 
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1. Общие положения 
При утверждении нового типа газового баллона на высокое давление, с целью доказательства его эксплуатационной надежности, наряду с довольно-таки широким спектром испытаний проводят и циклические испытания внутренним гидравлическим давлением. В большинстве случаев эти испытания проводят один раз, в самом начале. Но по некоторым нормативным документам (НД), с целью подтверждения стабильности качества изготовления, циклические испытания проводятся и в процессе устоявшегося производства баллонов, например, один из партии, либо один из пяти или десяти последовательных партий. Подробные процедуры испытаний можно найти в соответствующих нормативных документах на производство тех или иных баллонов. Некоторые положения циклических испытаний для ряда НД являются общими. 

Баллоны разделяются по типам конструкций: CNG-1 - металлический; CNG-2 - металлический лейнер, армированный проволокой или непрерывными волокнами, (кольцевая обмотка); CNG-3 - металлический лейнер, армированный непрерывными волокнами, (полная обмотка, ее еще называют обмотка в кокон); CNG-4 - непрерывные волокна, с неметаллическим лейнером (полностью композиционный). Баллоны конструкции типа CNG-3 делятся в свою очередь на два подтипа, в одном, лейнер берет на себя часть расчетной нагрузки (более 5 %), в другом, служит только для герметизации. Требования к циклическим испытаниям полностью композиционных баллонов (CNG-4), у которых металлическими частями являются только закладные элементы, в основной части такие же, как и у остальных баллонов. Но в отличие от остальных, они в процессе циклических испытаний, через определенное количество циклов проверяются на газопроницаемость. Часть циклов для таких баллонов, а также для баллонов типа CNG-3 с не разделяющим нагрузку лейнером, проводят вакуумом. 
При утверждении нового типа баллона циклическим испытаниям подвергают 2-3 баллона. Эти испытания, как правило, проводят пробным гидравлическим давлением, которое в большинстве случаев составляет 1,5 от рабочего. Баллоны с неограниченным сроком службы должны выдержать 12000 циклов пробным давлением, или по некоторым НД 24000 циклов таким давлением, которое может реализоваться в баллоне (с учетом свойств используемых газов) при температуре 65 оС. Испытания должны пройти без разгерметизации (разрушения из-за разрыва или утечки вследствие свища). В случае высокого пробного давления допускается проведение испытаний давлением равным 2/3 от пробного. При этом баллоны должны выдерживать 80000 циклов без разгерметизации. Для баллонов с ограничением срока службы испытания состоят из двух последовательных частей. Во второй части допускается разгерметизация баллона вследствие образования свища, происходящего за счет трещины усталости, а не разрыва за счет квазистатического разрушения. В ряде случаев проводят дополнительные циклические испытания и для нескольких баллонов с искусственными дефектами, но давлением меньше пробного и меньшим количеством циклов. По некоторым НД после определенной наработки допускается образование свища. Также циклическим испытаниям подвергаются баллоны после испытаний на падение о плиту, после удара об острую кромку (и при отрицательных температурах), и при необходимости, баллоны после испытаний в соленой воде. Дополнительные циклические испытания давлением проводят и при экстремальных температурах, и после кратковременного воздействия открытого пламени. Иногда после циклических испытаний, включая и дополнительные, баллоны статическим давлением доводят до разрушения с определением коэффициентов запаса. Поскольку баллоны на высокое давление являются объектами повышенной опасности, спектр различных их испытаний довольно-таки широк. Более подробная информация о требованиях к циклическим испытаниям по различным НД приведена в [1]. 
Циклическим испытаниям подвергаются газовые баллоны на высокое давление. Баллоны на низкое давление, например, баллоны стальные сварные на давление 1,6 МПа для сжиженных углеводородных газов и т.п., не подвергаются испытаниям циклическими нагрузками. Стоит отметить, что в трубопроводной индустрии также не проводят циклические испытания внутренним давлением, поскольку там коэффициент запаса по толщине стенки заведомо высок. 
Рабочее давление в баллоне задается давлением газа при температуре 15 оС. По некоторым устаревшим НД 20 оС. При максимальной температуре эксплуатации баллона, давление в нем не должно превышать пробного (испытательного) давления. Как мы видим рабочее давление баллона весьма условно. Пробное же давление является расчетным давлением баллона. Напряжения в стенках при таком давлении не должны превышать 90 % предела текучести. При этом пробное давление для баллонов, изготовленных из материала, отношение временного сопротивления к пределу текучести которого более 2, может быть снижено до 1,25 рабочего давления. Для баллонов производства USA распространенным является коэффициент 5/3. 
В ряде НД циклические испытания проводят пробным давлением, и очевидно, в случае неразрушения, получают большую гарантию циклической долговечности и надежности по сравненью с теми НД, где испытания проводят на уровне рабочего давления. Немаловажным является и то, что на более высоких нагрузках возрастает вероятность выявить квазистатическое разрушение присущее мягкому нагружению - разрушение вследствие раскрытия (разрыва), что для баллонов не допускается. А такое разрушение может иметь место в случае не совершенства конструкции, например, формы вогнутых днищ, мест перехода одной геометрической формы в другую, и т.п. Локальные же какие-то изъяны, включения, каверны, трещины и т.п. которые работают в условиях жесткого нагружения, могут также приводить к разгерметизации, но она в большей степени происходит по усталостному механизму вследствие образования свища, что менее опасно по сравнению с разрывом. 
Усталостная долговечность конструкции 
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 - общее количество циклов от начала испытания до разрушения, при напряжениях выше предела выносливости. Она в свою очередь складывается из числа циклов до образования трещины наперед заданного размера (долговечности до трещины) и живучести (остаточной долговечности). Существует мнение, что при испытании металлов, форма кривой нагружения не влияет на усталостную долговечность. Усталостное разрушение определяется только наибольшим и наименьшим напряжениями [2]. Точно так же, как показывают опыты, несущественным является влияние частоты изменения напряжений. Исключения представляют испытания при высоких температурах, а также при воздействии коррозионной среды. В этих условиях уменьшение частоты приводит к некоторому снижению сопротивления усталости [2]. Остаточные же напряжения действуют подобно средним напряжениям цикла [3]. С увеличением напряжений 
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 уменьшается. 
При испытаниях на усталость имеются два существенно различающиеся между собой вида нагружения: нагружение с заданным размахом нагрузки - мягкое нагружение (перемещения кинематически не ограничены); нагружение с заданным размахом деформации - жесткое нагружение. Наиболее распространены и более соответствуют массовым условиям службы деталей конструкций в эксплуатации испытания с заданным размахом нагрузки. При жестком нагружении нет накопления деформаций, что исключает возможность квазистатического разрушения. В этом случае все материалы разрушаются по усталостному типу с образованием трещин, [4]. 
Ни при каких других видах разрушений характеристики прочности не зависят от такого большого числа факторов, как при усталостном разрушении. Основными из них являются: особенности материала и технологии изготовления; конструкция изделия/детали; режим нагружения; среда, контактирующая с изделием/деталью [5]. При малоцикловом нагружении, определяющей оказывается связь между комплексами основных механических свойств и долговечностью, а не связь между отдельными основными механическими свойствами и долговечностью [6]. Основанием для вероятностных подходов является тот факт, что процессы накопления усталостных (циклических) повреждений, приводящие к зарождению и последующему развитию усталостных (в том числе малоцикловых) трещин, носят случайный характер [6]. При одном и том же напряжении, испытуемые образцы металла могут показывать числа циклов до разрушения, различающиеся на один или даже на два порядка, [3]. В работах многих авторов наблюдается существенный разброс характеристик циклического деформирования, во многих случаях значительно превышающий разброс основных механических свойств. Статистическая природа процесса усталостного разрушения предопределяет рассеяние результатов усталостных испытаний в большей степени, чем других видов испытаний [5]. Коэффициенты вариации по живучести оказываются не менее 0,2 - 0,5 [6]. По справочным данным, при испытаниях долговечности, коэффициент вариации достигает значений 0,2 - 0,3. Разброс данных наблюдается и при определении обычных пределов прочности, текучести и других характеристик, но с относительно низким коэффициентом вариации 0,01 - 0,05. 
При усталостных испытаниях рассеяние долговечности уменьшается с увеличением уровня напряжений [5, 6, 7, 8]. По этой причине рассеяние уменьшается с ростом уровня концентрации напряжений [5]. С увеличением уровня напряжений уменьшается и коэффициент вариации долговечности [6, 9, 10]. С повышением уровня действующих напряжений наблюдается переход от разрушения по зернам к разрушениям по их границам, и может изменяться место и характер разрушения [5]. При натурных испытаниях, размах амплитуды в наиболее опасных точках, весьма затруднительно определить достоверно, в отличие от количества циклов при котором произошло разрушение. 
Рассеяние в значительной мере зависит от формы и размеров образцов. С увеличением поперечных размеров испытуемых образцов из металла разброс по долговечности снижается [3, 5]. Экспериментально установлено, что небольшие образцы металла более прочны, чем крупные. В образцах крупных сечений по сравнению с малыми имеется большая вероятность наличия дефектов и опасно напряженных зерен, что связано со статистической природой процесса усталостного разрушения [3]. 
Нормативный коэффициент запаса по долговечности, равен 
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 - число циклов до разрушения с вероятностью 0,5 (50 %) - медиана распределения усталостной долговечности, 
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 - максимально-допустимое число циклов, при котором вероятность разрушения крайне низкая, практически нулевая. В практике технических условий (ТУ), для гарантии, обычно принимают 
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. Такой коэффициент применяется для сосудов давления, для трубопроводов, и для других изделий с низкой исходной концентрацией напряжений. Для элементов конструкций и деталей машин с заведомо высокой исходной концентрацией напряжений, в силу более малого рассеяния, принимают 
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 [12]. При расчетах элементов авиадвигателей, например, 
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Учитывая литературные источники относительно распределения усталостной (циклической) долговечности экспериментальных образцов, большинство авторов склоняется к логарифмически нормальному закону распределения. При этом коэффициент вариации, характеризующий рассеяние, может колебаться в районе 0,2…0,5. Используя это распределение и коэффициент вариации, например 0,5 (самый худший) и для баллонов, можно прогнозировать их циклическую долговечность, основываясь на результатах предварительно проведенных циклических испытаний без разрушения. Распределение вероятности возможного разрушения зависит от количества баллонов, на которых проводились испытания, и от количества циклов нагружения во время этих испытаний. Испытуемые баллоны, в процессе испытаний не должны утратить герметичность «разрушиться». 

Требования, прописанные в НД, касаются баллонов с неконтролируемым, большим количеством циклических нагрузок во время эксплуатации, которые в свою очередь вообще могут быть неограниченными. Если количество циклических нагружений баллонов при их эксплуатации невелико, и контролируемо, то требования НД завышены. Поэтому для таких баллонов целесообразно проводить циклические испытания меньшим количеством циклов, но это должно быть обосновано. Данная методика может использоваться как экспресс-метод, например, в случае повышения пробного/рабочего давления. Если это повышение оправдано статической прочностью. Либо же для баллонов, которые изготовлены не в соответствии с каким-либо НД. Данная методика построена на циклических испытаниях малым, не приводящим к разрушению количеством циклов. Безусловно, имеется множество методик расчета на циклическую прочность, но для этого нужно располагать геометрией, механическими свойствами, возможными несовершенствами геометрии, приводящими к концентрации напряжений и т.д. В данной публикации методики расчета на циклическую прочность не рассматриваются. 
Детальная проработка излагаемой ниже теории рассмотрена в [1]. Там же приведены все математические выкладки, которые в данной публикации приводятся без подробных доказательств. Приводимые в публикации зависимости для нормального и логарифмически нормального распределений, а также сами эти распределения проверены методом Монте-Карло. То же касается и для теоретических распределений их минимальных значений. 

2. Применение нормального и логарифмически нормального законов для оценки распределения долговечности 
Рассмотрим дискретную случайную величину 
[image: image11.wmf]X

, которая задается своей конечной выборкой 
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 элементов. Независимо от закона распределения этой случайной величины, для нее справедливы выборочное математическое ожидание (выборочное среднее значение) 
[image: image14.wmf]M
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, и выборочное среднее квадратичное (стандартное) отклонение 
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 как корень квадратный из несмещенной оценки выборочной дисперсии. 
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Функция распределения дискретной величины 
[image: image18.wmf]X

: 
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 - вероятность того, что величина 
[image: image21.wmf]X

 примет значение, меньшее наперед заданного конкретного числа 
[image: image22.wmf]x

. Для любой случайной величины, независимо от того, дискретная она или непрерывная, справедливо: 
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)

01

Fx

££

. Чем больше элементов в выборке, тем приведенные характеристики «надежней» определяют величину 
[image: image24.wmf]X

. Если величина 
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 состоит из бесконечного количества элементов, то при 
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 выборка стремится к генеральной совокупности. Но могут быть и исключения, когда количество элементов величины 
[image: image27.wmf]X

 конечно, тогда это число и будет являться генеральной совокупностью. 

Располагая значениями 
[image: image28.wmf]M
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, 
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 и законом распределения дискретной случайной величины, ее можно заменить на непрерывную случайную величину, обладающую большим функционалом. Полезной функцией присущей только для непрерывных случайных величин является плотность распределения вероятностей: 
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 - функция распределения для непрерывной величины. Нижнее значение 
[image: image32.wmf]a

 интервала интегрирования является нижней границей области допустимых значений величины 
[image: image33.wmf]X

. В случае нормального распределения 
[image: image34.wmf]a
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, для логарифмически нормального распределения, (см. ниже), этой границей является ноль. Площадь под кривой 
[image: image35.wmf](

)

fx

 естественно равна единице. Для дискретных случайных величин не существует функции плотности распределения вероятностей, так как такие случайные величины не являются абсолютно непрерывными функциями. Если 
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 для дискретной величины ступенчатая функция, то для непрерывной она плавная. Математическое ожидание и дисперсия (среднее квадратичное отклонение в квадрате) непрерывной величины определяются следующими зависимостями: 
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. Далее не будем конкретизировать, дискретная это или непрерывная величина, а будем пользоваться общим математическим аппаратом. 

Дополнительные не менее важные числовые характеристики случайной величины 
[image: image39.wmf]X
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 - медиана - значение случайной величины 
[image: image41.wmf]X

, для которой значение функции распределения равно 0,5 - значение, разделяющее области с 50 % вероятностью. Количество элементов выборки, для дискретной величины, справа и слева от медианы примерно одинаково. 
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 - мода - значение случайной величины 
[image: image43.wmf]X

 с наибольшей частотой - значение, при котором наблюдается максимум функции плотности распределения вероятностей - 
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 - коэффициент вариации случайной величины 
[image: image46.wmf]X

 (относительное стандартное отклонение). 

Используется условная классификация выборок на основе коэффициента вариации: при 
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 выборка вариабельна слабо, при 
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 - средне, при 
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 - сильно. 

Для нормального распределения, математическое ожидание, медиана и мода совпадают. Стоит отметить, что если мы рассматриваем выборку, то для нее значения медианы, моды и коэффициента вариации будут выборочные значения. Понятно, что чем больше элементов в выборке, или чем ближе выборка к генеральной совокупности, тем эти значения «надежней». На основании выборочных числовых характеристик, полученных при обработке результатов испытаний, привлекая дополнительный математический аппарат, делаются заключения о законе распределения случайной величины. Или какому закону распределения более всего соответствует случайная величина, полученная экспериментальными методами. Для этого требуются большие выборки. После того как мы доказали или догадываемся какому закону распределения соответствует случайная величина, мы можем пользоваться его математическим аппаратом для решения частных задач. 

Если случайная величина 
[image: image50.wmf]X

 при этом распределена по нормальному закону (распределение Гаусса), то ее плотность распределения и функция распределения соответственно равны: 
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, где минус берется для значений находящихся слева от математического ожидания, 
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 - положительная величина, 
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 - отклонения от математического ожидания в стандартных отклонениях, а 
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 - функция ошибок Гаусса. 
Для построения плотности и функции распределения величины 
[image: image56.wmf]X

 распределенной по нормальному закону, а также для проведения разнообразных вычислений, шкалу абсцисс целесообразно представлять в виде 
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). В таком представлении, числовые значения на оси абсцисс симметричны относительно математического ожидания. 

Параметр 
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 показывает, на сколько стандартных отклонений значение 
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 отстоит от математического ожидания 
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 вправо или влево, в зависимости от знака. В случае нормального распределения 
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. Значение 
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 можно представить как результат обратной функции нормального распределения 
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 и 
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 приводятся в таблицах по математической статистике. 

Логарифмически нормальным (логнормальным) распределением называется распределение такой строго положительной величины 
[image: image67.wmf]W

, (
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), логарифм которой 
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 распределен нормально [13]. Значения величины 
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 могут быть как больше, так и меньше нуля. Поэлементно можно представить как 
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 элемент множества 
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, а 
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 элемент множества 
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. Плотность распределения и функция распределения величины 
[image: image77.wmf]U

 естественно равны плотности и функции нормального распределения. Логнормальное распределение является более удобным в использовании, чем нормальное. 

В случае непрерывного представления, из взаимосвязи величин 
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 и 
[image: image79.wmf]W

, и поскольку 
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. Подставляя найденное для плотности распределения в функцию распределения величины 
[image: image82.wmf]W

 получаем 
[image: image83.wmf](

)

(

)

(

)

(

)

(

)

00

wwu

dw

FwfwdwfufuduFu

w

====

òòò

-¥

. Отсюда видно, что функции распределения величин 
[image: image84.wmf]U

 и 
[image: image85.wmf]W

 совпадают. 

Математическое ожидание и дисперсию случайной величины (
[image: image86.wmf]W

), подчиняющейся логарифмически нормальному распределению возьмем из учебника [13]: 
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, где 
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 математическое ожидание и дисперсия величины 
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. Разделив 
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, откуда: 
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где 
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 - коэффициент вариации величины 
[image: image97.wmf]W
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Из выражения для 
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Понятно, что 
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Приведенные зависимости, полученные для непрерывной величины, работают и для ограниченного выборочного распределения, при условии, что оно действительно распределено по логнормальному закону. Величина 
[image: image102.wmf]U

 необходима нам для использования ее функции распределения как для нормального закона, не более того. 

Плотность распределения и функция распределения логарифмически нормально распределенной величины 
[image: image103.wmf]W

 соответственно равны: 
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, где минус берется для значений находящихся слева от математического ожидания логарифма, параметр 
[image: image106.wmf]t

 см. выше. 

Медиана и мода логнормального распределения определяются следующими выражениями: 
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. Соблюдается условие: 
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. Полезно указать, что математическое ожидание логарифма, непосредственным образом переходит в медиану логнормального распределения. 

Коэффициент вариации величины 
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, можно выразить следующим способом: 
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При коэффициенте вариации 
[image: image112.wmf]w
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 а, следовательно, и 
[image: image113.wmf]u

n

 стремящимся к нулю, логнормальное распределение стремится к нормальному, а соответственно, медиана и мода, к математическому ожиданию. Причем стоит отметить что 
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 отличаются друг от друга тем больше, чем больше коэффициент вариации. Стоит заметить, что 
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, что дает преимущества логарифмически нормальному закону. 

Если случайная величина 
[image: image118.wmf]W

 действительно распределена по логнормальному закону, то для определения всех зависимостей для нее, достаточно оперировать величинами 
[image: image119.wmf]M
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 и 
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. Эти величины можно найти, по результатам циклических испытаний, используя формулы (1). Если же мы предполагаем нормальный закон распределения, в таком случае также используем формулы (1). 

Для построения плотности и функции распределения величины 
[image: image121.wmf]W

 распределенной по логнормальному закону, а также для проведения разнообразных вычислений, шкалу абсцисс можно брать как и у величины 
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, (см. выше), но целесообразней ее представлять в виде 
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. В таком представлении, числовые значения для величины 
[image: image126.wmf]U

, на оси абсцисс симметричны относительно медианы. 

В качестве иллюстрации, на рисунке 1 приведены нормальное и логнормальное распределения. 
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Рисунок 1. Нормальное и логарифмически нормальное распределения при математическом ожидании 5700 и коэффициенте вариации равном 0,5: 
Norm - нормальное распределение; L-Norm - логнормальное распределение; 1 - для 
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, значения для оси абсцисс с отклонениями кратными стандартному отклонению, где 
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Взаимосвязь между 
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Принимая 
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Если же положить что 
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3. Оценка вероятности разрушения баллонов по результатам испытаний их опытных образцов без разрушения 
Задача про миллион баллонов. Пусть мы условно, в качестве примера, имеем один миллион баллонов, каждый из которых в процессе эксплуатации будет заправляться 10 раз рабочим давлением - небольшое количество циклов нагружения. Нам нужно провести экспериментальный экспресс-анализ с некой гарантией того, что у нас все баллоны выдержат эксплуатационное количество нагружений (10 раз). Про баллоны нам ничего неизвестно, ни материал, ни предельные давления, ни геометрия, ни механические свойства, ни коэффициенты концентрации напряжений в наиболее опасных местах, ни распределение циклической (усталостной) долговечности, словом ничего. Известно только то, что баллоны принадлежат одному типу, а еще лучше, одной партии производства. Баллоны прошли неразрушающий контроль, и предварительные нагружения пробным давлением, которое на некоторую величину превышает рабочее. Циклические нагружения выбранных наугад экспериментальных баллонов будем производить пробным давлением. При испытаниях баллоны не должны «разрушиться». Сначала нагрузим один баллон 10-ю циклами давления. Результат особо ни о чем не говорит. Если мы ему дадим пятикратный запас, т.е. 50 циклов, и он не разрушится, то какая-то незначительная доля вероятности, что наши миллион баллонов выдержат по 10 циклов, имеется. Если же мы 50-ю циклами давления нагрузим 2 баллона, и они не разрушатся, то вероятность будет немного выше, чем при нагружении одного баллона. Представим наш мысленный эксперимент в виде ряда из элементов (количество баллонов - количество циклов их нагружения): 1 - 10; 1 - 50; 2 - 50; 2 - 100; 3 - 100; 4 - 100, и т.п. Интуитивно понятно, что чем больше баллонов задействовано в испытаниях, и чем больше количество их нагружений пробным давлением, тем больше вероятность того, что наши миллион баллонов выдержат по 10 циклов рабочим давлением. 

Также интуитивно понятно, чтобы повысить эту вероятность, нужно либо увеличивать количество баллонов в испытаниях, либо увеличивать количество циклов их нагружения. 

Вопрос заключается в том, чтобы оценивать эти вероятности. 

Не маловажным является вопрос и выбора баллонов для циклических испытаний. Выбор наугад не является оптимальным. Если уж мы и проводим циклические испытания, то для них лучше выбирать худшие из признанных годными баллоны. Такими баллонами могут служить те, у которых: 

- больший коэффициент остаточного расширения при пробном нагружении давлением после производства, или 

- большее упругое расширение, (если остаточное неизвестно), или 

- большее отношение объема к весу (если остаточное и упругое расширения неизвестны), или 

- имеются некие различные, но допустимые дефекты. 

В соответствии с некоторыми НД, для баллонов определяются упругое и остаточное расширения. По этим критериям производят отбраковку баллонов, как на стадии производства, так и при периодическом их освидетельствовании. Эти критерии, в тех НД, где они предусмотрены, применяются к каждому баллону при нагружении его пробным давлением, т.е. 100 % контроль [1, 14, 15, 16]. 

Вероятность того, что из 
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 выбранных случайным образом чисел (элементов) все они одновременно окажутся больше или меньше медианы, равна 
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, эти вероятности соответственно составят: 0,5; 0,25; 0,125; 0,0625; 0,03125. Например, мы испытали 3 баллона некоторым количеством циклов, и они не разрушились. Вероятность того что это количество циклов окажется больше медианы составляет 12,5 %, для 5-ти баллонов соответственно 3,125 %. В случае же испытания только одного баллона понятно - 50 %. 
Поскольку 
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 заданное значение, то вероятность того чтобы 
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 может выступать, например число циклов до разрушения, в случае нормального распределения, либо натуральный логарифм от числа циклов до разрушения в случае логарифмически нормального распределения. В качестве же 
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 - математическое ожидание, и стандартное отклонение числа циклов до разрушения, либо логарифма числа циклов до разрушения. Функции 
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 в случае нормального распределения, для 
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 приведены на рисунке 2, они между собой симметричны. 
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Рисунок 2. Функции 
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 в случае нормального распределения, для 
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В случае испытания одного образца (
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), понятно, что функция 
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Предположим, что мы испытали 
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 образцов баллонов, тестовым количеством циклов нагружения 
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 без разрушения, ни один из баллонов не «разрушился». Далее такой случай, при котором мы не получили разрушения при циклических испытаниях, будь то разрыв или свищ приводящие к утрате герметичности, будем называть «удачное» испытание. В качестве удачного испытания может быть заложен и другой какой-нибудь критерий. Для композитных баллонов им может служить, например, некритическое разрушение волокон, не отслаивание наружного защитного покрытия и т.п. При этом мы ничего не знаем о реальном распределении количества циклов до разрушения. Если предположить что при наших 
[image: image173.wmf]N

t

 циклов мы находимся в зоне медианы реального распределения, то такая вероятность равна 
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, см. рисунок 2, кривая 3 - тонкой линией. Вероятность того, что они все три уже должны «разрушиться», тоже равна 0,125, кривая 3 - жирной линией. Если же предположить, что каким-то чудом мы оказались, например, в зоне математическое ожидание плюс 1 стандартное отклонение, не получив ни одного разрушения, то такая вероятность вообще окажется очень низкой 
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. Причем вероятность того что они все три уже должны быть разрушены равна 
[image: image176.wmf](

)

(

)

3

3

0,8413450,595555

FN

t

==

. 

Допустим, что мы испытали 
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 баллонов, тестовым 
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 количеством циклов нагружения без разрушения, «удачное» испытание. Если при нагружении 
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 баллона произойдет его разрушение при количестве циклов равным, или меньшим чем 
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, то доля, припадающая на этот результат составит 
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 эта доля уменьшается. Это число можно приравнять к вероятности 
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 циклов, при условии, что все предыдущие выдержали испытания, т.е. 
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Естественно, что вероятность 
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 баллон выдержит 
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 циклов, равна 
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. В сумме эти две вероятности дают единицу. Стоит отметить, что если 
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 (испытали один баллон), то вероятность того, что следующий баллон выдержит испытания, равна 50 %. Значения вероятности разрушения и не разрушения, в зависимости от количества испытанных баллонов приведены на рисунке 3а. На рисунке 3b приведено значение параметра 
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, (понятно, что 
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 отрицательная величина), как результат обратной функции нормального распределения от значений 
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, которые между собой симметричны. 

Следует отметить, что под баллонами можно подразумевать и некие другие полномасштабные образцы или элементы чего-либо. 
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Рисунок 3. Вероятности разрушения и не разрушения и значения обратной функции нормального распределения в зависимости от количества испытанных баллонов: 
а - вероятности разрушения 
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 и не разрушения 
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; b - значение параметра 
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, как результат обратной функции нормального распределения. 
Не имея фактических значений 
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, можно догадаться, что при увеличении количества «удачно» испытанных баллонов 
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, условная медиана 
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, для которой вероятность разрушения равна 50 %, как бы смещается вправо относительно 
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, см. рисунок 4. (Эти смещения будут большими для больших коэффициентов вариации). При испытании всего лишь одного баллона, 
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 совпадают. Точками на рисунке 4 указаны значения при испытании 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 баллонов, (справа налево). 
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Рисунок 4. К идее циклических испытаний баллонов без разрушения. 
Располагая значениями 
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 и 
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, по формуле (4) определяем вероятность разрушения для этих значений - эта же вероятность является значением функции распределения. Далее находим значение 
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, как обратное значение функции нормального распределения. Чтобы не путаться в знаках, значение 
[image: image209.wmf]k

 используем по модулю. Задаваясь коэффициентом вариации 
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Для некоего значения количества циклов 
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. Расписывая это выражение более подробно, получаем 
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Поскольку мы договорились, что параметр 
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 положительный, то при непосредственном вычислении функции 
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Вводя замену в соответствии с формулой (3): 
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Из этих зависимостей, задаваясь вероятностью разрушения при некотором количестве циклов 
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На рисунке 5, для логнормального распределения, (в качестве 
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Рисунок 5. Зависимости между тестовым коэффициентом запаса по долговечности и количеством баллонов, подвергающихся испытаниям, для различных вероятностей разрушения, при коэффициентах вариации 0,5 - а) и 0,2 - b). 
Следует отметить, что 
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 может быть и меньше 1. Это возникает в тех случаях, когда задаваемая вероятность  
[image: image244.wmf](

)

[

]

P

N

-

, будет больше 
[image: image245.wmf](

)

(

)

(

)

11

PFNn

tc

==+

-

. 

В случае нормального распределения, легко показать, что 
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. Необходимо отметить, что использовать нормальное распределение следует только в тех случаях, когда 
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Аналогично для нормального распределения можно получить 
[image: image256.wmf](

)

11

1

1

1

1

F

n

cx

NN

t

FP

N

x

n

n

æö

-

+

ç÷

ç÷

+

èø

=

æö

-

+

ç÷

-

èø

, и 


[image: image257.wmf](

)

1

1

11

1

n

c

N

t

FFP

N

N

xx

nn

=-

æö

æö

æö

-

ç÷

+-

ç÷

ç÷

-

ç÷

ç÷

èø

èø

èø

. Стоит отметить, что при непосредственном вычислении 
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В принципе, как один из вариантов, в гарантированный запас, можно использовать и линейную зависимость для вероятности, см. прямую 
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На рисунке 6 представлен гипотетический случай, когда испытаниям на 
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Рисунок 6. Распределения при испытании трех баллонов 600 циклами нагружения при коэффициенте вариации равном 0,5: 
(
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). Обозначения приняты, так, как и на рисунке 1. 
При проектировании испытаний на ограниченное количество циклов, может возникать технико-экономический вопрос. Что целесообразней, нагрузить большее количество баллонов меньшим количеством циклов или наоборот, меньшее количество баллонов большим количеством циклов. Этот вопрос связан со стоимостью баллонов, которые после испытаний нельзя уже будет использовать, и ресурсом испытательного оборудования, тем более, если речь идет о высоких давлениях. Немаловажным фактором может оказаться еще и время, которое необходимо затратить на циклические нагружения и возможный ремонт оборудования. 

При количестве циклов нагружения 
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, понятно, что вероятность разрушения будет меньше чем определяемая по формуле (4). На рисунке 7a приведены зависимости вероятности разрушения от количества циклов нагружения. В качестве иллюстрации, зависимости приведены для случаев, когда «удачным» испытаниям на 
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[image: image284.wmf](

)

,%

N

. На рисунке 7b приведены вероятности разрушения в зависимости от количества циклов нагружения взятого в процентах от медианы. Зависимости приведены для логнормального и нормального законов распределения при коэффициентах вариации 0,2 и 0,5. Точками указаны значения при испытании баллонов 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, (сверху, вниз). Сопоставляя между собой 
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Рисунок 7. Вероятности разрушения в зависимости от количества циклов нагружения: 
а - для логнормального распределения при коэффициенте вариации равном 0,5;

b - для логнормального, жирными и нормального, тонкими линиями, распределений. Для коэффициентов вариации 0,5 и 0,2. 
На рисунке 8 приведены вероятности разрушения баллонов в зависимости от количества циклов их нагружения. Распределения построены при «удачном» испытании  трех баллонов 12000 циклами, как рекомендуется по многим НД. 
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	Рисунок 8. Вероятности разрушения для нормального и логнормального распределений в зависимости от количества циклов нагружения, для коэффициентов вариации 0,2, 0,3, 0,4, 05, при испытании 3-х баллонов 12000 циклами: 

Norm - нормальное распределение; L-Norm - логнормальное распределение. 




Согласно нашей модели, при «удачном» испытании одного баллона, мы закладываем десятикратный запас по долговечности 
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, (в принципе может быть и какое-то другое значение). При увеличении количества «удачно» испытанных баллонов, этот коэффициент (
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) очевидно можно понижать. Стоит отметить, что не один из испытуемых баллонов не должен «разрушиться» при количестве циклов равном 
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. В противном случае нужно использовать другие подходы, например в качестве 
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 брать меньшее значение. 

Тестовый коэффициент запаса по долговечности, для логнормального распределения, можно переписать следующим образом 
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Зависимости тестового коэффициента запаса по долговечности, (при нормативном, равным 10), в зависимости от количества испытанных баллонов для коэффициентов вариации 0,2, 03, 04, 0,5 приведены на рисунке 9 жирными линиями. Например, если испытаниям подвергаются 6 баллонов, и мы используем логнормальное распределение, то при коэффициенте вариации равном 0,2 достаточно нагрузить баллоны с восьмикратным запасом 
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. При коэффициенте вариации 0,5 достаточно иметь шестикратный запас по долговечности. Тут нет парадокса, поскольку при коэффициенте вариации 0,5, медиана будет отстоять дальше от значения 
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В случае использования нормального распределения 
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, см. рисунок 9 тонкие пунктирные линии. При использовании нормального закона распределения значения необходимых запасов будут еще ниже. 

При увеличении количества испытуемых баллонов, (речь идет об «удачных» испытаниях), расчетный тестовый коэффициент запаса по долговечности будет уменьшаться. Но это уменьшение будет происходить с замедлением. При неимоверно большом количестве баллонов он может достигнуть единицы. 
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	Рисунок 9. Тестовый коэффициент запаса по долговечности (при нормативном равным 10), в зависимости от количества испытанных баллонов при коэффициентах вариации 0,2, 03, 0,4, 0,5: 

Жирными сплошными линиями для логнормального, тонкими пунктирными - для нормального распределений. 




Очевидно, что в нашем случае, для вероятности того, что 
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 приведена на рисунке 10a. Когда мы рассматриваем 
[image: image310.wmf](

)

P

-

, мы находимся слева от медианы, в таком случае, значение 
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 отрицательно либо равно нулю, но в целях удобства мы его берем по модулю, но подразумевая о чем идет речь. Понятно, что для нормального и логарифмически нормального распределений число циклов соответствующее одному 
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Вероятность того, что все 
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 результатов испытаний баллонов окажутся меньше, либо больше некоторого числа  
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 баллонов, в случае нормального распределения, приведена на рисунке 10b. Во избежание путаницы следует иметь в виду, что 
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На рисунке 10 точками указаны значения при испытании 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 баллонов (отсчет справа налево). 
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Рисунок 10. Зависимости для случая нормального распределения: 
а - зависимость 
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Интересно отметить, что 
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Немаловажным является отметить следующий аспект. Если у нас по каким-то причинам известна медиана распределения долговечности, то, в случае уверенности, что распределение долговечности подчиняется логнормальному закону, нормативный коэффициент запаса по долговечности можно брать меньшим, чем в случае нормального распределения. 

При циклических же испытаниях объектов до разрушения, получаем некую дискретную величину (
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) приведшие к разрушению объектов испытания. (Разрушение одного объекта испытаний - один элемент 
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 также определяемыми по формулам (1). Затем по величинам 
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4. Распределение для минимальных значений, масштабный фактор 
Допустим мы имеем некую непрерывную случайную величину 
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Поскольку вероятность того чтобы 
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 выбранных случайным образом чисел (элементов) одновременно были больше 
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Если 
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, т.е. функция распределения и плотность распределения вероятностей минимальных значений полностью совпадают с исходными функциями распределений. То же касается и числовых параметров: мат. ожидания, моды, медианы и стандартного отклонения. 
Следует отметить, что для максимальных значений 
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. Зависимости для максимальных значений подчиняются тем же закономерностям что и зависимости для минимальных значений. 
Функции 
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, при симметричном исходном распределении, симметричны друг другу относительно 
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 - математического ожидания этого исходного распределения [17]. Сами же распределения экстремальных значений не симметричные, даже если исходное симметричное, см. рисунок 12. Если исходное распределение ограниченно, то и распределение экстремальных значений ограничено этим же значением, [17]. 
Рассмотрим случай, когда исходное распределение подчиняется нормальному закону. Перейдем от 
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Рисунок 11. Нормальное распределение, для 
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На рисунке 11a, при вероятности 
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 близкой к 0,4, расчетные значения близки к значениям, когда 
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Полезно отметить, что медиана минимальных значений 
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 элементов в целом. Приравняем функцию распределения минимальных значений к 0,5: 
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Рисунок 12. Распределения экстремальных значений при исходном нормальном распределении для количества элементов 1, 3, 12: 
Тонкие сплошные - для минимальных значений, тонкие пунктиром - для максимальных значений. Жирные - для основного распределения. (Для 
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На рисунке 13 приведены распределения экстремальных значений при логнормальном исходном распределении для количества элементов 1, 3, 12. 
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Рисунок 13. Распределения экстремальных значений при логнормальном распределении для количества элементов 1, 3, 12: 
Тонкие сплошные - для минимальных значений, тонкие пунктиром - для максимальных значений. Жирные - для основного распределения. 
Для распределения минимальных значений логнормального распределения используя метод Монте-Карло можно проверить, что 
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Аналогично с 
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Распределения логарифма минимальных значений величины 
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 совпадают с распределениями минимальных значений величины 
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Рисунок 14. Распределения минимальных значений для количества элементов 24 при условных 
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Тонким - по формулам для минимальных значений. Жирным - в предположении логнормального распределения. 
Количество элементов 
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 может выступать как 
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 - кратность. И она не инвариантная величина. Распределение минимальных из 
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 элементов  значений не совпадает с логнормальным законом, построенным по минимальным значениям, см. рисунок 14. 

Масштабный фактор. В условиях постоянства напряженно-деформированного состояния (НДС), при увеличении объема испытуемого на усталостную долговечность материала, математическое ожидание, медиана и мода будут смещаться в область меньших значений. Стандартное отклонение при этом будет уменьшаться. Это можно охарактеризовать как влиянием масштабного фактора. 
Например, мы подвергаем циклическим испытаниям одни и те же трубы метровой или пятиметровой длины. Трубы при этом должны быть маленького диаметра, чтобы нивелировать краевым эффектом от влияния днищ. В качестве примера также могут послужить некие радиаторы, состоящие из радиаторных секций. Также если мы, не изменяя длину, будем увеличивать диаметр и толщину стенки баллона, но при условии, что отношение диаметра к толщине будет сохраняться. Рассматривать можно и длину сварных швов в одинаковых условиях нагружения. 

5. Выводы 
1. При циклических испытаниях баллонов, согласно нормативной документации, квазистатическое их разрушение не допускается. 

2. При описании рассеяния усталостной долговечности (количества циклов до разрушения) многие авторы рекомендуют использовать логарифмически нормальное распределение.  При этом коэффициент вариации, характеризующий рассеяние, может колебаться в районе 0,2…0,5. 

3. Закладывая в расчетах коэффициент вариации 0,5, прогнозируем худший вариант. 

4. При увеличении количества испытанных баллонов, и в случае их не разрушения, коэффициент запаса по усталостной долговечности можно снижать. 

5. С увеличением объема испытываемого материала распределение усталостной долговечности смещается в область меньших значений, а стандартное отклонение уменьшается. 
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