

Seventh Framework Programme Marie Curie Action "International Research Staff Exchange Scheme"

ИЭС им. Е. О. Патона, г. Киев, Украина.

Протоколы испытаний статическим внутренним давлением образцов I1, I2, I3, и I4, изготовленных из полномерной трубы 219×6, сталь 20.

Содержание.	
-	Стр
Данные, общие для образцов I1I4.	2
Образец I1 без дефекта. Протокол замеров и испытаний.	7
Образец I2 с дефектом. Протокол замеров и испытаний.	17
Образец I3 с дефектом и бандажом. Протокол замеров и испытаний.	25
Образец I4 без дефекта, но с бандажом. Протокол замеров и испытаний.	34
Сводные результаты по образцам I1I4 и материале.	44

Данные, общие для образцов I1...I4.

Таблица 1. Данные диаграмм растяжения образцов материала трубы 219×6 (сталь 20), вырезанных в кольцевом и осевом направлении, в исходном состоянии, (представлены результаты до начала образования шейки).

		Направле	зление образца						
Мо. т/т	Колы	цевое		Oce	вое				
JN≌ 11/11	Деформация	Напряжение		Деформация	Напряжение				
	e	σ, ΜΠα		e	σ, ΜΠα				
1	2	3		4	5				
1	0	0		0	0				
2	3,26E-05	8		0,000151	19,98938				
3	0,000106	24,0249		0,000185	29,54951				
4	0,000144	29,18004		0,000215	38,62682				
5	0,000162	34,33518		0,00025	48,38009				
6	0,000192	39,19852		0,000293	58,42306				
7	0,000218	43,96459		0,000336	67,88663				
8	0,000239	48,6334		0,000384	78,02617				
9	0,000252	53,69128		0,000436	87,29661				
10	0,000269	58,74915		0,00047	96,56704				
11	0,000278	62,83435		0,000531	106,3203				
12	0,000308	67,79496		0,000608	116,653				
13	0,000338	73,5337		0,000652	125,5372				
14	0,000347	78,20251		0,000708	135,7733				
15	0,000368	82,19045		0,000755	145,43				
16	0,000398	87,63739		0,000816	154,4107				
17	0,000415	92,598		0,000885	164,2605				
18	0,00045	97,75314		0,000932	174,3035				
19	0,000476	102,0329		0,001002	183,6705				
20	0,000471	106,7017		0,001066	192,9409				
21	0,000527	112,635		0,001148	203,2736				
22	0,00054	116,5256		0,001205	212,7372				
23	0,00057	122,2644		0,001313	222,7802				
24	0,000587	126,7386		0,001421	232,5334				
25	0,000648	137,0489		0,001511	241,9004				
26	0,000695	146,0947		0,001667	251,4606				
27	0,000759	155,4324		0,001831	260,9241				
28	0,00082	165,6454		0,001973	271,0637				
29	0,000876	175,372		0,002198	280,141				
30	0,000944	185,5851		0,002453	289,7977				
31	0,001005	194,6309		0,002552	294,0466				

Таблица 1 (продолжение)

1	2	3	4	5
32	0,001065	204,0658	0,002729	299,8407
33	0,001151	214,6678	0,002889	304,1862
34	0,001228	223,6164	0,003183	309,3042
35	0,001336	233,1485	0,003351	313,4566
36	0,001452	243,2643	0,003589	313,9395
37	0,001602	252,8937	0,003874	316,933
38	0,001805	263,204	0,004181	317,0296
39	0,00205	272,5416	0,004583	318,285
40	0,002355	282,0737	0,005066	318,7678
41	0,002794	292,0922	0,006237	319,0575
42	0,003314	301,5271	0,006656	317,9953
43	0,003921	311,4483	0,00819	320,6026
44	0,004725	320,8832	0,011499	320,8923
45	0,005757	330,9017	0,015542	323,6927
46	0,007193	340,4338	0,017745	324,755
47	0,009408	350,6468	0,020838	328,7142
48	0,011533	359,8872	0,022587	331,9009
49	0,01444	369,7111	0,024453	335,7636
50	0,017718	379,5351	0,026272	340,9782
51	0,021524	388,9699	0,029499	348,607
52	0,026328	399,183	0,032933	357,2981
53	0,03228	408,5206	0,036134	364,8303
54	0,039015	418,5391	0,039469	372,7488
55	0,047381	428,2657	0,042907	379,605
56	0,058571	437,8951	0,046303	383,7574
57	0,073362	447,6218	0,049823	389,648
58	0,080588	452,3879	0,053223	395,1523
59	0,091503	457,154	0,056679	399,7876
60	0,097529	460,072	0,060117	404,1331
61	0,105741	462,0173	0,063465	407,6095
62	0,108982	462,99	0,066908	412,4378
63	0,117461	465,908	0,070454	416,0108
64	0,124447	468,0479	0,074001	418,6181
65	0,130565	469,2151	0,077547	422,4808
66	0,14166	470,8686	0,080865	425,4744
67	0,147745	471,8413	0,084342	428,0817
68	0,156018	472,3276	0,087906	430,4959
69	0,162021	473,4948	0,091496	433,1032
70	0,166767	473,6893	0,095129	434,938
71	0,170957	474,1757	0,09874	437,4487
72	0,176682	474,3702	0,100277	438,5109
73	0,182505	474,5647	0,103498	438,9938

Таблица 1 (продолжение)

			_		
1	2	3		4	5
74	0,18944	474,7593		0,107119	441,9873
75	0,195191	474,1757		0,110619	442,3736
76	0,200817	474,7593		0,113921	443,7256
77				0,117327	445,6569
78				0,120642	447,1054
79				0,124086	448,4573
80				0,127466	450,9681
81				0,131035	450,6784
82				0,134522	452,1269
83				0,138117	454,0582
84				0,141712	454,0582
85				0,145332	454,4445
86				0,148975	455,4102
87				0,152737	456,7621
88				0,156409	457,1484
89				0,16015	458,6934
90				0,163857	458,5969
91				0,167697	459,9488
92				0,171201	459,3694
93				0,175067	459,466
94				0,178881	459,7557
95				0,182759	460,142
96				0,186672	460,9145
97				0,190461	460,6248
98				0,19409	461,3008
99				0,198306	460,142
100				0,201531	460,9145
101				0,20485	460,2385
102				0,208101	460,6248
103				0,211481	461,3973
104				0,214718	460,8179
105				0,217873	461,1076
106				0,221137	460,0454
107				0,2244	461,3973
108				0,227659	461,0111
109				0.230819	460.9145

Рис. 1. Схемы измерения толщины стенки образцов I1...I4 (развертка цилиндрической части): а - расположение базовых сечений I, II, III, в которых производились измерения периметров; б - расположение точек кернения 1*..16* в сечениях I, II, III, 1...16 - точки, измерения толщины стенки; в - схема измерения толщины стенки в дефектах образцов I2, I3. (Размеры указаны в мм).

Измерения толщины стенки и периметра образцов с дефектом (I2 и I3) производились только по Сеч. I^* , II^* .

При определении периметров использовалась рулетка толщиной 0,2 мм. Толщина стенки цилиндрической части образцов замерялась ультразвуковым толщиномером ТУЗ-2.

При испытаниях в качестве днищ используются две пластины (см. рис. 2), которые отрезаются от испытанного образца и привариваются к следующему.

Рис. 2. Стальные пластины, используемые в качестве днищ для образцов I1...I4. (Размеры указаны в мм).

СТАТИЧЕСКИЕ ИСПЫТАНИЯ ВНУТРЕННИМ ГИДРАВЛИЧЕСКИМ ДАВЛЕНИЕМ ДО РАЗРУШЕНИЯ.

Образец I1 без дефекта. Протокол замеров и испытаний.

Для изготовления образца использована гильза № 8 (рис. За). Вес гильзы: 33,2 кгс. В каждом из сечений I, II, III, (см. рис. 1), методом кернения были выделены точки (обозначены знаком «*»), расстояния между которыми служили базой для измерения остаточных деформаций в кольцевом и осевом направлении после разрушения (см. рис. 16 и табл. 2, 4).

Таблица 2. Дл	ина цилиндрической	части образца	I1 и осевые	размеры в	первоначальном
состоянии.					

N⁰			Ce	ктор								
Π/Π	Линсиный размер, мм	Ι	II	III	IV	Среднее						
1	Длина гильзы, l _o	949	949	946	946	947,5						
2	Длина между внутренними поверхностями пластин (днищ) после приварки	954	954	952	952	953						
3	Расстояние между сечениями I-III	646,5	646,5	645	644							
4	Расстояние между сечениями I-II	325	325	324	323							
5 Расстояние между сечениями II-III 321,5 321 321												
Разм	Размеры 3, 4, 5, после разрушения образца не изменились, что свидетельствует об отсутствии											

остаточной деформации в осевом направлении. Примечание: Измерения производились в средней части секторов I...IV, (см рис. 1). Расстояния между сечениями определялось по точкам кернения.

Таблица 3. П	ериметр	ы обр	зазца 1	[1 в пе	рвоначальном состоян	и (Р	н) и после	разрушения	$(\mathbf{P}_{\mathbf{K}}).$
,	1 1		,		1		11/		(1()

Сечение →	I (150 мм от верха)	II (по середине)	III (150 мм от низа)	Среднее
Периметр, Р _Н , мм	693,5	693,5	693,5	693,5
Периметр, Р _К , мм	744	753	741	746

	N⁰	Сеч	<u>. I</u>	Ceu	4. I	Сеч.	II	Сеч	. II	Сеч.	III	Ceч. III	
Участок	точки замера	l_{H}	s _H	$l_{\rm K}$	s _K	l_{H}	s _H	$l_{\rm K}$	\mathbf{s}_{K}	l_{H}	s _H	l_{K}	s _K
1*-2*	1	43,2	6,7	46,1	6,3	46,2	6,5	51,4	5,8	42	6,8	44,8	6,4
2*-3*	2	43,7	6,2	48,4	5,7	44	6,3	51,2	5,5	42,4	6,6	45,3	6,2
3*-4*	3	44	6,0	51	5,1	44,5	6,3	-	5,4	43,2	6,6	46,4	6,0
4 [*] -5 [*]	4	41,6	6,2	46,3	5,6	44,5	6,2	51,5	5,2	44,5	6,5	47,8	5,9
5*-6*	5	42,6	6,2	46,8	5,8	42,8	6,5	47	5,9	43,2	6,2	48	5,6
6 [*] -7 [*]	6	44	6,5	47,1	6,0	41,7	6,4	46,8	5,6	42,6	6,3	47	5,7
$7^{*}-8^{*}$	7	43	6,6	46	6,1	43	6,8	47,2	6,1	42,1	6,2	46,2	5,7
8 [*] -9 [*]	8	45,5	6,9	48,2	6,5	40,8	6,8	43,6	6,4	44	6,7	47	6,2
9 [*] -10 [*]	9	43	7,2	45	6,9	43,5	7,1	45,8	6,8	42,8	7,2	45	6,8
$10^{*}-11^{*}$	10	42,8	7,4	44,2	7,1	42,8	7,4	44,6	7,1	42,4	7,1	44	6,9
$11^{*}-12^{*}$	11	44	7,4	45,8	7,2	43,7	7,1	45,5	6,9	43	6,9	45	6,6
$12^{*}-13^{*}$	12	41,5	7,2	43,2	6,9	41,6	6,9	44	6,6	43,5	6,9	45,4	6,5
13*-14*	13	44,3	6,8	46,8	6,5	42	6,7	45	6,6	43,8	6,9	46	6,6
$14^{*}-15^{*}$	14	42,7	6,5	45,5	6,2	44	6,7	47	6,4	43,4	7,0	45,4	6,6
15^{*} -16 [*]	15	43	6,7	46	6,2	42,4	6,9	45,4	6,8	44,8	6,9	47,2	6,7
16*-1*	16	42,8	6,8	45,3	6,4	44,4	6,8	47,2	6,5	43,4	6,8	46	6,3
Сумма	-	691,7	-	741,7	-	691,9	-	703,2	-	691,1	-	736,5	-
Среднее	_	43,23	6,71	46,36	6,28	43,24	6,71	46,88	6,23	43,19	6,73	46,03	6,29

Таблица 4. Образец I1. Длина баз и толщина стенки в сечениях I, II, III, в первоначальном состоянии (l_H, s_H) и после разрушения (l_K, s_K), (мм).

Вес сваренного образца: 61,2 кгс. Вес сваренного образца с водой: 93,2 кгс. Температура воды: 18 °С. Вес воды: 32 кгс. Принимаемый внутренний объем образца 32 л.

Рис. 3. Образец I1 (точками указаны места замера толщины): а - гильза № 8; б - образец перед испытанием; в - сварной шов приварки днища к гильзе; г верхнее днище с выпускным штуцером.

На рис. 4 и рис. 5 приведены результаты замера толщины стенки образца до и после испытаний соответственно.

Γ		1	Голц	цина	прн	перв	ично	мос	мотр	е, (м	м).			Per	. №	I	1					dCp.
]	I]	I			I	п			Ι	V		min	Cp.	max	s	%
	1	6,6	6,3	6,5	6,4	6,6	6,7	6,6	6,6	6,7	7,0	7,6	7,3	7,0	6,6	6,8	6,6	6,3	6,74	7,6	0,33	0,3
	2	6,7	6,4	6,5	6,4	6,5	6,7	6,5	6,5	6,8	7,3	7,8	7,3	6,9	6,7	6,8	6,5	6,4	6,77	7,8	0,39	0,6
	3	6,8	6,3	6,1	6,3	6,4	6,5	6,5	6,8	7,1	7,3	7,5	7,2	6,9	6,7	6,6	6,6	6,1	6,73	7,5	0,39	0,0
I	4	6,7	6,2	6,0	6,2	6,2	6,5	6,6	6,9	7,2	7,4	7,4	7,2	6,8	6,5	6,7	6,8	6	6,71	7,4	0,44	-0,3
	5	6,8	6,3	6,0	6,1	6,2	65	6.6	60	7.1	7.2	75	7,0	6,9	6,8	7,0	7,1	6	6,76	7,5	0,44	0,4
	6	6,7	6,2	6,0	6,1	6,	Лин	ия	разр	уш	ени	я з	7,0	7,1	7,1	7,1	6,8	6	6,74	7,3	0,41	0,2
	7	6,6	6,3	5,9	6,1	6,6	6,5	6,5	6,6	6,9	7,2	7,3	7,1	7,3	7,1	7,1	6,8	5,9	6,74	7,3	0,43	0,3
	8	6,5	6,2	5,9	6,3	6,8	6,6	6,4	6,6	6,8	7,1	7,3	7,2	7,1	7,0	6,9	6,8	5,9	6,72	7,3	0,39	-0,1
	9	6,6	6,5	6,3	6,4	6,7	6,3	6,3	6,9	6,6	7,1	7,4	7,1	7,1	6,9	6,8	6,7	6,3	6,73	7,4	0,33	0,1
	10	6, 7	6,6	6,4	6,3	6,5	6,4	6,4	7,0	6,8	7,3	7,2	6,9	6,8	6,8	6,8	6,8	6,3	6,73	7,3	0,29	0,1
	11	6,6	6,5	6,3	6,3	6,6	6,4	6,3	6,8	7,0	7,5	7,2	6,8	6,8	6,9	6,9	6,7	6,3	6,73	7,5	0,34	0,0
п	12	6,5	6,3	6,3	6,2	6,5	6,4	6,8	6,8	7,1	7,4	7,1	6,9	6,7	6,7	6,9	6,8	6,2	6,71	7,4	0,33	-0,2
	13	6,3	6,2	6,2	6,0	6,1	6,4	6,8	7,0	7,2	7,3	7,0	6,8	6,7	6,9	7,2	6,9	6	6,69	7,3	0,43	-0,6
	14	6,2	6,3	6,1	6,1	6,3	6,5	6,7	6,9	7,2	7,2	7,1	6,9	6,9	7,2	7,4	6,8	6,1	6,74	7,4	0,43	0,2
	15	6,3	6,0	6,1	6,3	6,4	6,3	6,6	6,8	7,1	7,2	7,1	7,0	7,2	7,2	7,2	6,7	6	6,72	7,2	0,44	-0,1
	16	6,2	6,0	6,3	6,7	6,5	6,2	6,5	6 ,7	7,0	7,2	7,2	7,2	7,2	7,3	7,1	6,7	6	6,75	7,3	0,43	0,4
	17	6,3	6,2	6,6	6,6	6,4	6,2	6,5	6,8	7,0	7,1	7,1	7,1	7,0	7,2	7,0	6,5	6,2	6,73	7,2	0,35	0,0
	18	6,7	6,6	6,5	6,4	6,1	6,2	6,3	6,6	6,9	7,1	7,0	7,1	6,8	6,9	6,9	6,7	6,1	6,68	7,1	0,31	-0,8
ш	19	6,8	6,6	6,6	6,5	6,2	6,3	6,2	6,7	7,2	7,1	6,9	6,9	6,9	7,0	6,9	6,8	6,2	6,73	7,2	0,30	0,0
	20	6,8	6,6	6,5	6,3	6,1	6,2	6,4	7,2	7,3	7,1	6,8	6,8	6,9	6,9	6,9	6,7	6,1	6,72	7,3	0,35	-0,1
	21	6,5	6,4	6,4	6,4	6,3	6,4	6,7	7,1	7,3	7,0	6,8	6,7	6,9	7,0	6,9	6,6	6,3	6,71	7,3	0,30	-0,2
	22	6,5	6,4	6,4	6,3	6,3	6,5	6,8	7,1	7,1	7,0	6,9	6,8	7,0	7,3	6,8	6,5	6,3	6,73	7,3	0,32	0,1
1	nin	6,2	6	5,9	6	6,1	6,2	6,2	6,5	6,6	7	6,8	6,7	6,7	6,5	6,6	6,5					
	Ър.	6,56	6,34	6,27	6,30	6,40	6,42	6,52	6,82	7,02	7,20	7,20	7,01	6,95	6,94	6,94	6,72					
1	nax	6,8	6,6	6,6	6,7	6,8	6,7	6,8	7,2	7,3	7,5	7,8	7,3	7,3	7,3	7,4	7,1					
	S	0,20	0,18	0,23	0,17	0,20	0,15	0,17	0,19	0,19	0,14	0,26	0,18	0,16	0,22	0,18	0,14					
													-							_		
Толщина, мм min Cp. max S n Cp-3So (Ср	+3S								
Ц	или	ндр	иче	ская	и ча	СТЬ			5	,9	6,	/3	- 7	,8	0,	36	352	5,	63	7,	82	
-																		T				
-	Условный min Vсловный max																					
		100	0000	5.25	5.45	1.00	5.00	6.00	6.05	6.44	6.67	6.02	7.02	7.02	7.42	2.62	7.0	· – '	т	a301 1	4	
Ш	кала	4.7	5,09	5,28	5,48	5,07	5,80	0,00	0,25	0,44	0,04	0,83	7,03	1,22	7,41	/,01	7,8		1	1		

Рис. 4. Карта толщин стенки образца I1 в первоначальном состоянии, мм.

Справа указано отклонение среднего значения толщины в сечении по отношению к средней толщине баллона (dCp). На рисунке также указано расположение трещины, образовавшейся после разрушения образца; min, Cp., max - минимальное, среднее и максимальное значение, соответственно; S - стандартное выборочное отклонение; n - число замеров.

N⁰	№ точки в сечении															
сечения	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	6,6	6,3	6,5	6,4	6,6	6,7	6,6	6,6	6,7	7,0	7,6	7,3	7,0	6,6	6,8	6,6
2	6,7	6,4	6,5	6,4	6,5	6,7	6,5	6,5	6,8	7,3	7,8	7,3	6,9	6,7	6,8	6,5
3	6,8	6,3	6,1	6,3	6,4	6,5	6,5	6,8	7,1	7,3	7,5	7,2	6,9	6,7	6,6	6,6
4	6,7	6,2	6,0	6,2	6,2	6,5	6,6	6,9	7,2	7,4	7,4	7,2	6,8	6,5	6,7	6,8
5	6,8	6,3	6,0	6,1	6,2	6,5	6,6	6,9	7,1	7,3	7,5	7,0	6,9	6,8	7,0	7,1
6	6,7	6,2	6,0	6,1	6,4	6,6	6,5	6,7	7,0	7,2	7,3	7,0	7,1	7,1	7,1	6,8
7	6,6	6,3	5,9	6,1	6,6	6,5	6,5	6,6	6,9	7,2	7,3	7,1	7,3	7,1	7,1	6,8
8	6,5	6,2	5,9	6,3	6,8	6,6	6,4	6,6	6,8	7,1	7,3	7,2	7,1	7,0	6,9	6,8
9	6,6	6,5	6,3	6,4	6,7	6,3	6,3	6,9	6,6	7,1	7,4	7,1	7,1	6,9	6,8	6,7
10	6,7	6,6	6,4	6,3	6,5	6,4	6,4	7,0	6,8	7,3	7,2	6,9	6,8	6,8	6,8	6,8
11	6,6	6,5	6,3	6,3	6,6	6,4	6,3	6,8	7,0	7,5	7,2	6,8	6,8	6,9	6,9	6,7
12	6,5	6,3	6,3	6,2	6,5	6,4	6,8	6,8	7,1	7,4	7,1	6,9	6,7	6,7	6,9	6,8
13	6,3	6,2	6,2	6,0	6,1	6,4	6,8	7,0	7,2	7,3	7,0	6,8	6,7	6,9	7,2	6,9
14	6,2	6,3	6,1	6,1	6,3	6,5	6,7	6,9	7,2	7,2	7,1	6,9	6,9	7,2	7,4	6,8
15	6,3	6,0	6,1	6,3	6,4	6,3	6,6	6,8	7,1	7,2	7,1	7,0	7,2	7,2	7,2	6,7
16	6,2	6,0	6,3	6,7	6,5	6,2	6,5	6,7	7,0	7,2	7,2	7,2	7,2	7,3	7,1	6,7
17	6,3	6,2	6,6	6,6	6,4	6,2	6,5	6,8	7,0	7,1	7,1	7,1	7,0	7,2	7,0	6,5
18	6,7	6,6	6,5	6,4	6,1	6,2	6,3	6,6	6,9	7,1	7,0	7,1	6,8	6,9	6,9	6,7
19	6,8	6,6	6,6	6,5	6,2	6,3	6,2	6,7	7,2	7,1	6,9	6,9	6,9	7,0	6,9	6,8
20	6,8	6,6	6,5	6,3	6,1	6,2	6,4	7,2	7,3	7,1	6,8	6,8	6,9	6,9	6,9	6,7
21	6,5	6,4	6,4	6,4	6,3	6,4	6,7	7,1	7,3	7,0	6,8	6,7	6,9	7,0	6,9	6,6
22	6,5	6,4	6,4	6,3	6,3	6,5	6,8	7,1	7,1	7,0	6,9	6,8	7,0	7,3	6,8	6,5

Таблица 5. Толщина стенки образца I1 в первоначальном состоянии, мм.

Таблица 6. Толщина стенки в сечениях I, II, III, образца I1 в первоначальном состоянии, мм.

Сечение		№ точки в сечении															
Сечение	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Среднее
Ι	6,7	6,2	6,0	6,2	6,2	6,5	6,6	6,9	7,2	7,4	7,4	7,2	6,8	6,5	6,7	6,8	6,71
II	6,5	6,3	6,3	6,2	6,5	6,4	6,8	6,8	7,1	7,4	7,1	6,9	6,7	6,7	6,9	6,8	6,71
III	6,8	6,6	6,6	6,5	6,2	6,3	6,2	6,7	7,2	7,1	6,9	6,9	6,9	7,0	6,9	6,8	6,73
Среднее																	6,71

		Толі	щина	а при	осмо	отре	посл	e pas	руш	ения	, (мм).		Per	. №	I	1					dCp.
]	[]	I			I	Π			Ι	V		min	Cp.	cem	s	%
	1	6,5	6,2	6,4	6,4	6,5	6,8	6,8	6,5	6,6	6,9	7,5	7,5	70	6,8	6,7	6,5	6,2	6,73	7,5	0,37	4,5
	2	6,3	6,0	5,9	6,1	6,3	6,4	6,3	6,5	6,6	7,1	72	74	68	6,5	6,5	6,3	5,9	6,54	7,6	0,48	1,6
	3	6,4	5,9	5,6	5,8	5,8	6,3	6,3	6,7	6,9	7,4	7	0,00	9 7	6,4	6,3	6,3	5,6	6,44	7,4	0,53	0,1
Ι	4	6,4	5,7	5,2	5,6	5,9	6,0	6,3	6,7	7,0	7,2	7,2	7,0	6,5	6,2	6,3	6,5	5,2	6,36	7,2	0,58	-1,3
	5	6,3	5,6	5,0	5,7	5,8	61	62	6.6	6.0	7.0	7 2	6,8	6,7	6,5	6,6	6,8	5	6,37	7,3	0,61	-1,1
	6	6,2	5,6	5,0	þ,2	6,0	Ли	ния	раз	руц	іени	Я	6,9	6,9	6,8	6,8	6,5	5	6,34	7,2	0,64	-1,5
	7	6,2	5,6	4,7	5,1	6,1	6,1	5,7	6,3	6,8	7,0	7,2	7,0	7,0	6,9	6,7	6,6	4,7	6,31	7,2	0,73	-1,9
	8	6,0	5,7	4,7	5,3	6,4	6,2	5,8	6,2	6,5	6,8	7,2	6,9	7,0	6,8	6,7	6,5	4,7	6,29	7,2	0,67	-2,2
	9	6,0	5,9	5,3	5,5	6,4	5,8	6,0	6,1	6,3	7,0	7,2	6,8	6,7	6,7	6,4	6,5	5,3	6,29	7,2	0,53	-2,3
	10	5,9	6,0	5,4	5,6	6,3	5,9	6,0	6,3	6,5	7,2	7,1	6,6	6,6	6,6	6,5	6,4	5,4	6,31	7,2	0,49	-2,0
	11	6,0	6,1	5,4	5,7	6,1	-5,8	6,2	6,2	6,9	7,4	7,3	6,7	6,6	6,6	6,6	6,3	5,4	6,37	7,4	0,55	-1,1
п	12	5,9	5,8	5,5	5,7	6,1	6,0	6,4	6,7	7,0	7,3	7,0	6,7	6,5	6,3	6,6	6,6	5,5	6,38	7,3	0,51	-0,9
	13	5,7	0	11	\$,4	Ŕ.	129	6,3	6,6	7,1	0	05	6,8	6,4	$^{6,\hat{K}}$		6,5	5,4	6,33	7,2	0,63	-1,7
	14	5,8		ļļ	5,6	-0,	120	6,3	6,5	6,9	·,.	.0,0	6,8	6,7	7,	0,0	/ 6,6	5,4	6,38	7,2	0,62	-1,0
	15	5,8	5,4	5,3	5,8	6,0	5,8	6,1	6,3	6,8	7,0	6,9	7,2	7,0	7,1	7,0	6,5	5,3	6,38	7,2	0,64	-1,0
	16	5,9	5,3	5,7	6,0	5,9	5,6	6,1	6,3	6,7	7,0	7,0	7,2	7,0	7,1	6,8	6,4	5,3	6,38	7,2	0,61	-1,0
	17	6,4	5,6	6,3	6,2	5,9	5,7	6,1	6,4	6,8	7,0	7,0	6,9	6,9	7,2	6,9	6,2	5,6	6,47	7,2	0,50	0,5
	18	6,3	6,1	6,1	6,3	5,9	5,7	6,1	6,3	6,8	7,1	6,8	6,9	6,7	6,8	6,7	6,4	5,7	6,44	7,1	0,40	0,0
ш	19	6,5	6,2	6,2	6,2	5,7	5,8	6,0	6,5	7,0	7,1	6,7	6,8	6,7	6,7	6,8	6,5	5,7	6,46	7,1	0,41	0,4
	20	6,4	6,2	6,4	6,1	5,9	5,9	6,1	7,0	7,2	7,0	6,7	6,7	6,8	6,9	6,7	6,5	5,9	6,53	7,2	0,41	1,5
	21	6,6	6,2	6,3	6,1	6,2	6,3	6,4	6,9	7,2	7,0	7,0	6,9	6,9	6,9	6,9	6,4	6,1	6,64	7,2	0,36	3,1
\square	22	6,7	6,5	6,5	6,5	6,5	6,8	6,9	7,1	7,4	7,2	7,0	7,0	7,2	7,5	7,3	6,5	6,5	6,91	7,5	0,35	7,4
	_																					
m	in	5,7	5,3	4,7	5,1	5,7	5,6	5,7	6,1	6,3	6,8	6,7	6,6	6,4	6,2	6,3	6,2					
	p.	6,19	5,84	5,63	5,81	6,05	6,05	6,20	6,50	6,85	7,09	7,10	6,93	6,79	6,77	6,72	6,47					
m	ax	6,7	6,5	6,5	6,5	6,5	6,8	6,9	7,1	7,4	7,4	7,6	7,5	7,2	7,5	7,3	6,8					
	S	0,29	0,32	0,56	0,39	0,25	0,32	0,27	0,26	0,26	0,16	0,24	0,23	0,20	0,31	0,25	0,13					
-																	_			~		
To	лщ	ина	, MM	[m	in	C	p.	m	ax		S	n	Ср	-3S	Cp	+3S	
Ци	іли	ндр	иче	ская	ча	СТЬ			4	,/	6,	44	- 7	,6	0,	54	352	4,	80	8,	0/	
\square																		Ter				
		Ven		ŭ mi														10		на,	MM	
		YCH	JOND		n									V	слов	ныи	max			22et	T I	

Рис. 5. Карта толщин стенки образца после разрушения и места вырезки образцов 180мм×30мм на растяжение. К, О - образцы в кольцевом и осевом направлении, соответственно, нижний индекс - деформация в кольцевом направлении после разрушения. Остальные обозначения - те же, что и на рис. 4.

Таблица 7. Толщина стенки в сечениях I, II, III, образца I1 после разрушения, мм.

Cononno		№ точки в сечении															
Сечение	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Среднее
Ι	6,4	5,7	5,2	5,6	5,9	6,0	6,3	6,7	7,0	7,2	7,2	7,0	6,5	6,2	6,3	6,5	6,36
II	5,9	5,8	5,5	5,7	6,1	6,0	6,4	6,7	7,0	7,3	7,0	6,7	6,5	6,3	6,6	6,6	6,38
III	6,5	6,2	6,2	6,2	5,7	5,8	6,0	6,5	7,0	7,1	6,7	6,8	6,7	6,7	6,8	6,5	6,46
Среднее																	6,40

Примечание: Толщина стенки в месте разрыва, замеренная штангенциркулем: 4,5 - 4,8 мм.

Нагружение образца внутренним давлением производилось ступенчато, (см. рис. 6), после каждого этапа давление сбрасывалось до нуля. Этапы 1...20 проводились в водяной рубашке, а этапы 21..25 вне ее. На этапах 1...20 после нагружения производилась выдержка под давлением 0,5...3 мин., а затем происходил сброс давления. Для увеличения объема гидравлической системы с целью снижения пульсации давления в схему гидравлического нагружения дополнительно вводился ресивер (2 последовательно подключенных сосуда высокого давления).

Рис. 6. Этапы нагружения внутренним давлением образца 11. P_P, P_{Π} - условно принимаемые рабочее и поверочное давления; P_T - давление текучести; P_B, P_B^* - максимальное давление, которое выдержал образец, и давление при котором произошло разрушение; 2 Ресивера - давление в двух спаренных ресиверах без подключенного образца.

По результатам испытаний образца I1:

 $P_{T}=20 \text{ MIIa}, P_{B}=27,59 \text{ MIIa}, P_{B}=27,44 \text{ MIIa}.$

Судя по характеру трещины и по диаграмме нагружения (см. рис. 6), образец I1 разрушился вязко.

Таблица 8. Результаты замеров изменения объема образца I1 при испытаниях в водяной рубашке, (ВР). Этапы 1...20.

N⁰	P _{max} ,	P _{min} ,	$\Delta Wi_{\text{полн}}$,	ΔWi_{oct} ,	
этапа	МΠа	ΜПа	см ³	см ³	
0	0	0	0	0	
1	1,85	1,85	9,815	0	
2	3,63	3,62	19,472	0	and the second s
3	5,02	5	26,912	0	
4	6,1	6,06	32,611	0	
5	7,26	7,18	38,785	0	
6	8,99	8,91	47,650	0	
7	10,43	10,32	55,566	0,1583	
8	11,69	11,64	63,006	0,4749	
9	13,47	13,35	73,455	1,7414	
10	14,54	14,46	79,787	1,8997	9
11	15,54	15,43	86,120	2,8495	
12	16,46	16,34	92,610	4,2743	No. of Concession, Name
13	17,75	17,45	105,117	9,9734	
14	18,34	18,03	107,807	9,1818	A second s
15	19,25	18,67	140,894	36,0941	
16	19,95	19,28	174,760	66,0511	
17	20,9	20,22	357,089	236,6833	
18	21,81	21,03	425,892	293,7900	
19	22,86	22,33	536,666	389,4266	L / Areit
20	23,87	23,27	501,920	343,3284	Рис. 7. Водяная рубашка.

Примечание: ΔWi_{полн} - максимальное (полное) изменение объема на каждом этапе определялось в конце выдержки. ΔWi_{ост} - остаточное изменение объема на соответствующем этапе при сбросе давления, (увеличение объема образца). Изменение объемов определялось по бюреткам водяной рубашки (см. рис. 7), как разница уровней столба жидкости умноженная на коэффициент тарировки и с прибавлением 7,4 % учитывающих погрешность бюретки А, и 1,78% для бюретки Б.

Таблица 9. Периметры (Рр, мм) образца I1 и изменение веса образца с водой после этапов 20...25, (вне водяной рубашки).

Этон	P _{max} ,	Обозначение	(Сечение	e	Сполно	Изменение
Jian	МΠа	периметра	Ι	II	III	Среднее	веса, кг
0	0	Po=P _H	693,5	693,5	693,5	693,5	
20	23,87	P ₂₀	708,0	708,2	707,8	708	1,475
21	24,62	P ₂₁	711,2	711,3	710,4	710,97	1,658
22	25,71	P ₂₂	717	717,6	716,2	716,93	2,225
23	26,6	P ₂₃	725,4	726,1	723,3	724,93	3,100
24	27,41	P ₂₄	738,6	743,1	734,4	738,7	4,525
25	27,59	$P_{25} = P_K$	744	753	741	746	-

На рис. 8 в соответствии с табл. 9 приведены результаты изменения периметров.

Рис. 8. Периметры (Pp) образца I1 замеренные в сечениях I, II, III после этапов 20-25.

Таблица 10. Периметры (Р_к) в сечениях образца I1 после его разрушения.

1 17		
Сечение	№*	Р _К , мм.
	1	699,6
	2	719,5
	3	732,4
Сеч. І	4	742,5
	5	749,5
	6	-
	7	-
	8	-
	9	-
	10	-
	11	-
Сеч. II	12	-
	13	753,8
	14	753
	15	751,2
	16	748 8
	1	745,6
	18	741,4
Ceч. III	19	737,8
	20	730,5
	21	720
	22	702

Рис. 9. Фото образца II. а - после этапа 24; б - после разрушения (этап 25).

* - Периметры определялись в тех же сечениях в которых производились измерения толщины стенки, (см. рис. 1а).

Рис. 10. Вырезанные из образца I1, после его разрушения, заготовки для изготовления образцов растяжения.

Образец I2 с дефектом. Протокол замеров и испытаний.

Для изготовления образца использована гильза № 7 (рис. 12). Вес гильзы с дефектом: 32,7 кгс.

Таблица 11. Длина цилиндрической части образца и осевые размеры в первоначальном состоянии.

N⁰			Ce	ктор		
Π/Π	линсиный параметр, мм	Ι	II	III	IV	Среднее
1	Длина гильзы, l _o	948	948	946	947	947,25
2	Длина между внутренними поверхностями пластин (днищ) после приварки	954	954	952	953	953,25

Примечание: Измерения производились в средней части секторов I...IV, (см рис. 1).

Таблица 12. Периметры образца в первоначальном состоянии (P_H) и после разрушения (P_K).

Сечение →	I*	II^{*}	Среднее
Р _Н , мм	692,3	692,3	692,3
Р _К , мм	692,3	692,3	692,3

Таблица 13. Толщина стенки в сечениях I* и II* образца в первоначальном состоянии, мм.

N⁰		№ точки в сечении															
сечения	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Среднее
I*	7,1	6,7	6,6	6,6	6,8	6,6	6,4	6,4	6,5	6,8	6,8	6,8	6,6	7,0	7,1	7,3	6,76
II*	6,8	6,5	6,5	6,9	6,6	6,1	6,1	6,2	6,9	6,9	7,2	7,2	7,1	6,9	7,3	6,9	6,76
Среднее																	6,76

Примечание: После разрушения образца, толщина стенки в сечениях І* и ІІ* не изменилась.

Вес сваренного образца: 60,7 кгс. Вес сваренного образца с водой: 92,6 кгс. Температура воды: 12,5 °С. Вес воды: 31,9 кгс. Принимаемый внутренний объем образца 31,9 л.

Вес сваренного образца с водой и с подводящей давление арматурой: 93,3 кгс.

Первоначальные линейные размеры дефекта: 133×102 мм. Первоначальная длина бездефектной части образца по уровню середины дефекта (рис.11): А=586 мм.

Рис. 11. Длина бездефектной части образца.

Рис. 12. Образец I2: а - образец перед испытанием; б - разделка кромок под сварку; в, г - приварка нижнего днища; д - верхнее днище; е - дефект на образце (цифры возле точек указывают на толщину стенки).

Нагружение образца внутренним давлением производилось ступенчато, (см. рис. 13), после каждого этапа давление сбрасывалось до нуля. На этапах 1...9 производилась выдержка под давлением, необходимая для снятия показаний тензорезисторов установленных в дефекте и в бездефектной части образца, (см. рис. 14).

Рис. 13. Нагружение внутренним давлением образца I2, и сравнение его с образцом I1. а - этапы нагружение внутренним давлением образца с дефектом, (I2); б - сравнение с диаграммой нагружения образца (I1) без дефекта; в - предпоследний и последний этапы, (увеличено). Обозначения - те же, что и на рис. 6.

140,111	ца 17. П		рормации	, определе		пзорезиет	орам 1с	, (см. рис.	<u>1</u> +).
		Дефект		Деф	рект	Tp	yba	Tr	oyba
№ этапа	Р, МПа	Осевая де	формация	Кольцевая д	цеформация	Осевая де	формация	Кольцевая	деформация
		1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	1,45	7,79E-05	7,34E-05	0,00033	0,00033	2,29E-05	2,29E-05	0,00011	0,00011
2	2,45	9,17E-05	0,000115	0,000532	0,000536	3,21E-05	3,67E-05	0,000193	0,000188
3	3,34	0,000128	0,000147	0,000724	0,000734	5,5E-05	4,58E-05	0,000257	0,000266
4	4,32	0,000174	0,000193	0,000935	0,000935	6,42E-05	6,42E-05	0,00033	0,000339
5	5,04	0,000193	0,000211	0,001119	0,001119	7,34E-05	6,42E-05	0,00039	0,000385
6	5,83	0,000229	0,000284	0,001394	0,001366	8,25E-05	8,25E-05	0,000449	0,000445
7	6,9	0,000541	0,000633	0,001907	0,001816	0,000101	0,000101	0,000523	0,000523
8	8,12	0,000779	0,001522			0,000133	0,000128	0,000601	0,000605
9	9,64					0,00017	0,000174	0,000697	0,000692

Таблица 14. Полные деформации, определенные по тензорезисторам 1...8, (см. рис. 14).

Рис. 14. Тензометрирование образца I2: а - расположение тензорезисторов 5, 6, 7, 8; б - расположение тензорезисторов 1, 2, 3, 4; в – прибор ИСД-3 для измерения сопротивления тензорезисторов; г, д - образец в стенде для гидроиспытаний.

В кольцевом и осевом направлении в дефекте были выделены базы К и О, соответственно (см. рис. 16а). Измерение длин баз производилось после этапов 9...12 (см. табл. 15). Измерение, осуществлялось линейкой.

После этапа № 10 максимальный остаточный прогиб в дефекте достиг глубины дефекта (см. рис. 15).

		Л	инейные	размеры, мм	Длина	Вес образца
Этап №	Р, МПа	K	0	(длина х ширина)	дуги	с арматурой,
		К	0	дефекта	А, мм	кгс
9	9,64	44,8	44,6	133×102	586	93,3
10	11,78	45,9	44,6			-
11	13,49	47,2	44,6	133×107,2	586	93,3
12 (последний)	13,83	47,2	44,6	133×110	586	-

Таблица 15. Длины баз в дефекте и вес образца

Рис. 15. Фото дефекта образца І2 после этапа № 10.

Рис. 16. Фото дефекта образца I2 после этапа 11.

На рис. 17...19 приведены фото образца I2 после разрушения в дефекте.

Рис. 17. Фото образца I2 после разрушения: а - общий вид; б, в - разрушение в дефекте.

Рис. 18. Толщина стенки в дефекте до (а) и после разрушения (б), (размеры в мм).

На рис. 18б также указана толщина по контуру разрушения, замеренная штангенциркулем.

Рис. 19. Фрагмент зоны дефекта образца I2.

Образец ІЗ с дефектом и бандажом. Протокол замеров и испытаний.

Нагружение образца внутренним давлением производилось ступенчато, после каждого этапа давление сбрасывалось до нуля.

Хронология измерений и нагружения образца внутренним давлением:

- этап 1...5 - измерение деформаций с помощью тензорезисторов в дефекте и регулярной части трубы, до начала пластических деформаций в дефекте, (без бандажа).

- установка бандажа.

- этап 1...13 - измерение деформаций с помощью тензорезисторов в дефекте и регулярной части трубы, в том числе на поверхности бандажа

- этап 14...18 - измерение периметра трубы усиленной бандажом, определение изменений в весе.

Для изготовления образца использована гильза № 6 (рис. 22а). Вес гильзы с дефектом: 32,7 кгс.

Таблица 16. Длина цилиндрической части образца I3 и осевые размеры в первоначальном состоянии и после разрушения.

N⁰			Ce	ктор		
Π/Π	линсиный парамстр, мм	Ι	II	III	IV	Среднее
1	Длина гильзы, l _o	947	946	946	947	946,5
2	Длина между внутренними поверхностями пластин (днищ) после приварки	954	955	953	956	954,5
3	Тоже, после разрушения	954	955	953	956	954,5

Примечание: Измерения производились в средней части секторов I...IV, (см рис. 1).

Таблица 17. Периметр гильзы образца I3 и бандажа в первоначальном состоянии, в процессе испытания и после разрушения, мм.

Сеч. \rightarrow	4	5	6	8	9(I*)	9(I*)	9,5	10	11,5	13	14(II*)	18	19
Этап↓					Пере	ход							
0	693,5	693,5	693,5	693,5	693,5						693,5	693,0	693,0
0						731,6	732,6	735,8	737,5	736,5	735,0		
									П	П	П		
13	698,8	698,7	698,8	697,2	695,2	731,6	733,2	736,0	738,8	737,8	735,0	699,8	699,4
14	703,2	703,0	703,8	700,4	697,0	732,4	733,6	736,8	738,8	737,6	735,5	704,2	704,2
15	711,0	710,6	710,8	705,2	700,0	733,5	734,5	737,0	739,0	737,6	735,5	714,2	714,0
16	723,2	723,0	722,0	711,0	702,8	734,6	734,8	737,0	739,0	737,8	735,5	726,8	726,0
17	738,2	739,6	737,0	717,2	705,8	735,8	735,2	737,0	739,4	737,8	736,0	743,0	741,8
18	761,2	764,0	760,0	729,0	709,2	736,2	735,2	737,0	739,4	737,8	736,0	<u>764,0</u>	<u>764,0</u>
18^{**}					699,0			695,0		694,8	695,0		

Примечания: После установки бандажа периметры трубы в свободных от бандажа местах, не изменились. П - провода от тензорезисторов под бандажом. Жирным шрифтом выделены значения для бандажа. Подчеркиванием выделены значения, измеренные в месте разрушения. Сверху донизу образец разбит на условных 22 сечения, обозначение сечений см. на рис. 1. Сечение 9,5 находится между 9-м и 10-м сечениями. Переход - место начала бандажа (см. рис. 24), дано два значения - одно для трубы другое для бандажа. ** - после снятия бандажа.

Посередине дефекта в кольцевом (К) и осевом (О) направлениях, методом кернения набиты базы (см. рис 22б), длина их составила: К=44,8 мм, О=45,0 мм. После разрушения образца и снятия бандажа: К=45,4 мм, О=45,0 мм. Измерение осуществлялось металлической линейкой. Длина и ширина дефекта, в первоначальном состоянии, измеренная в средней части штангенциркулем: 133,2×102,2 мм. После разрушения образца и снятия бандажа: 133,3×103,2 мм.

		1	Голц	цина	прн	перв	ично	мос	мотр	е, (м	м).			Per	. №	Ι	3		_		×		dCp.
]	I			1	I			I	П			Ι	V				Cb	ma	ь	%
	1	7,2	6,8	6,8	6,7	6,6	6,8	6,6	7,2	6,9	7,0	7,4	7,3	7,0	6,9	6,7	7,1	6	,6	6,94	7,4	0,25	0,7
	2	7,3	7,1	6,6	6,5	6,7	6,8	6,5	7,0	7 ,0	7,2	7,4	7,2	7,0	6,9	6,9	7,4	6	5	6,97	7,4	0,29	1,2
	3	7 ,6	6,7	6,4	6,7	6,7	6,6	6,5	6,8	7,0	6,9	7,3	7,1	6,8	6,7	6,8	7,4	6	4	6,88	7,6	0,33	-0,2
Ι	4	7,1	6,7	6,4	6,7	6,9	6,6	6,7	6,9	6,9	7,0	7,2	7,2	7,0	7,0	7,3	7,6	6	,4	6,95	7,6	0,30	0,9
	5	7,1	6,9	6,1	6,5	6,6	6,8	6,6	6,8	6,8	6,9	7,1	7,0	7,2	7,4	7,4	7,3	6	1	6,91	7,4	0,35	0,3
	6	7,0	6,6	6,1	6,5	6,8	6,6	6,4	6,7	6,6	6,8	6,9	7,2	7,2	7,3	7,1	7,4	6	,1	6,83	7,4	0,36	-0,9
	7	6,9	6,7	6,6	6,9	6,9	6,7	6,6	7,1	6,6	6,8	7,1	7,2	7,1	7,2	7,2	7,3	6	,6	6,93	7,3	0,24	0,6
	8	6,8	6,8	6,8	6,8	6,9	6,7	6,3	6,6	6,5	7,0	7,1	7,0	7,1	7,0	7,1	7,2	6	3	6,86	7,2	0,24	-0,5
	9	7,0	7,0	6,9	6,9	6,6	6,4	6,2	6,3	6,6	7,2	7,2	7,0	7,0	7,0	6,9	7,5	6	.2	6,86	7,5	0,35	-0,5
	10	6,9	- 1	4	6,6	6,7	6,4	6,6	6,6	7,0	7,2	7,1	7,2	6,9	7,1	6,9	7,5	6	4	6,91	7,5	0,30	0,3
	11	7,22	2		6,9	6,8	6,5	6,8	7,0	7,1	7,2	7,2	7,0	6,8	69	7,1	7,4	6	5	6,99	7,4	0,23	1,5
п	12	6,7		_	6,6	6,5	6,5	6,7	6,8	6,8	7,0	6,9	6,6	6,8	7,1	7,5	7,2	6	,5	6,84	7,5	0,28	-0,8
	13	6,ó		3	6,6	6,5	6,3	6,9	6,6	7,0	7,2	6,9	7,0	7,1	7 .5	7,5	7,1	6	3	6,91	7,5	0,36	0,4
	14	6,5	6,5	6,9	6,7	6,6	6,3	Ли	ния	раз	pvii	іени	я	7,3	7,5	7,3	7,2	6	3	6,91	7,5	0,37	0,3
	15	6,6	6,7	6,7	7,1	6,7	6,2	0,5	0,0	0,7	0,5	7,0	7,4	7,2	7,2	7,2	7,1	6	,2	6,85	7,4	0,34	-0,6
	16	6,7	6,7	6,8	7,2	6,Þ	6,3	6,2	6,5	6,8	6,9	6,9	7,3	7,2	7,2	7,2	6,9	6	,2	6,83	7,3	0,34	-0,8
	17	6,9	7,0	6,8	6,7	64	6,4	6,1	6,6	6,9	7,1	6,7	7,1	7,2	7,2	7,2	7,0	6	,1	6,83	7,2	0,33	-0,8
	18	6,9	6,9	7,1	6,8	Ø	6,2	6,1	6,9	7,1	7,0	6,7	7,0	7,0	7,0	7,0	7,1	6	,1	6,82	7,1	0,33	-1,0
ш	19	7,3	6,6	6,8	6,5	\$,4	6,4	6,6	7,0	7,2	6,7	6,6	6,7	6,8	7,2	7,2	7,0	6	,4	6,81	7,3	0,30	-1,1
	20	6,5	6,9	6,7	6,7	6 ,5	6,8	6,6	7,0	6,9	6,8	6,7	6,7	7,1	7,4	7,3	7,1	6	5	6,86	7,4	0,27	-0,5
	21	6,7	7,4	6,6	6,5	6,4	6,8	6,9	7,0	6,9	6,8	6,9	6,6	7,3	7,5	7,3	6,9	6	4	6,91	7,5	0,33	0,3
	22	6,9	7 ,6	6,7	6,7	6,8	6,9	6,8	6,8	6,8	6,9	7,0	7,0	7,3	7 ,6	7,2	6,7	6	7	6,98	7,6	0,29	1,4
											_												
n	nin	6,5	6,5	6,1	6,5	6,3	6,2	6,1	6,3	6,5	6,7	6,6	6,6	6,8	6,7	6,7	6,7						
0	р.	6,93	6,87	6,66	6,72	6,63	6,55	6,53	6,79	6,86	6,98	7,01	7,06	7,06	7,17	7,15	7,20						
n	nax	7,6	7,6	7,1	7,2	6,9	6,9	6,9	7,2	7,2	7,2	7,4	7,5	7,3	7,6	7,5	7,6						
	σ	0,28	0,28	0,26	0,19	0,18	0,22	0,24	0,22	0,18	0,15	0,22	0,24	0,17	0,24	0,21	0,23						
Толщина, мм min Cp. max σ n Cp-3σ Cp+3σ																							
Цı	Цилиндрическая часть 6,1 6,89 7,6 0,31 344 5,97 7,81																						
																		1	ол	щи	на,	MM	
		Усл	овнь	ıй mi	n									y	слов	ный	max		0)6p	азец	Į –	
Ш	кала	5,1	5,41	5,57	5,73	5,88	6,04	6,19	6,35	6,51	6,66	6,82	6,98	7,13	7,29	7,44	7,6			<u> </u>	3		

Рис. 20. Карта толщин стенки образца ІЗ в первоначальном состоянии, мм.

На рисунке указано положение трещины, образовавшейся при разрушении образца, белой точкой указано начало разрушения. Горизонтальными и вертикальными линиями указаны, установленные на образец кольцевые и осевые тензорезисторы. Все остальные обозначения как и на рис. 4.

Вес сваренного образца: 60,6. Вес сваренного образца с водой: 92,5 кгс. Температура воды: 23 °С. Вес воды: 31,9 кгс. Принимаемый внутренний объем образца 31,9 л.

1	1	2		1 '			
тензор	№ резистора	1	2	3	4	5	6
П	[оложение	Дефект	Дефект	Дефект	Дефект	Труба	Труба
Hai	правление	Кольцевой	Кольцевой	Осевой	Осевой	Кольцевой	Кольцевой
Этап	Р, МПа						
0	0	0	0	0	0	0	0
1	2,12	0,367	0,367	0,092	0,092	0,110	0,110
2	3,13	0,541	0,495	0,128	0,138	0,156	0,165
3	3,84	0,679	0,633	0,165	0,165	0,202	0,211
4	5,05	0,926	0,899	0,211	0,220	0,266	0,275
5	5,93	1,164	1,073	0,257	0,257	0,312	0,321

Таблица 18. Деформации $\times 10^3$, в кольцевом и осевом направлениях, измеренные по тензорезисторам 1...6 установленным на образце I3¹⁾.

¹⁾ Измерения производились до установки бандажа.

Рис. 21. Деформации до установки бандажа, измеренные по тензорезисторам 1...6 установленным на образце I3.

0 а б

Рис. 22. Образец ІЗ: а - гильза № 6 с дефектом; б - дефект, в - образец ІЗ с бандажом.

Средняя толщина стенки в дефекте - 2,82 мм, вокруг дефекта - 6,46 мм. После разрушения, средняя толщина стенки в дефекте и вокруг дефекта не изменилась. Длина сварного шва вдоль оси трубы порядка 10 мм.

Перед намоткой бандажа, с целью выравнивания наружной поверхности трубы, дефект был заполнен композиционным материалом, состоявшим из порезанного на куски, длиной порядка 15 мм, ровинга, перемешанного с эпоксидным связующим холодного затвердевания: Клей эпоксидный универсальный марки «Химконтакт - Эпокси», ТУ-У 24.6-2558309112-006-2006.

Рис. 23. Установка тензорезисторов в дефекте (а) и на трубе (б); ровинг для заполнения дефекта (в); заполненный дефект перед намоткой бандажа (г).

Рис. 24. Установка тензорезисторов на бандаже: а - в зоне дефекта; б - в регулярной части.

Тензорезисторы, установленные на бандаж, располагаются поверх тензорезисторов, установленных на металле трубы.

Намотанный бандаж на образец I3: 16 слоев, шаг 2,36 мм/об, усилие натяжения ~ 4,6 кгс. Толщина бандажа ~ 6,22 мм. Ширина бандажа ~ 263 мм, без учета скоса с одной стороны ~ 234 мм. Бандаж расположен между 9-м и 15-м сечениями.

Таблица 19. Температурный режим полимеризации бандажа на образце I3.

День	Прогрев	Выдержка
	От - до, ^о С / мин	^о С / мин
1	20-120 / 90	120 / 120
2	20-130 / 90	130 / 90
2	130-140 / 30	140 / 180
3	20-150 / 90	150 / 180

Таблица 20. Деформации $\times 10^3$, измеренные по тензорезисторам 1...6 установленным на металле образца I3 и 1*...6* на бандаже¹⁾.

Этап	Р, МПа	1	2	3	4	5	6	1*	2*	3*	4*	5*	6*
0	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	-
1	3,13	0,532	0,541	0,128	0,147	0,165	0,147	0,128	0,101	0,156	0,046	0,138	-
2	5,35	0,770	0,807	0,220	0,202	0,275	0,257	0,330	0,293	0,238	0,110	0,229	-
3	6,40	0,899	0,935	0,275	0,229	0,330	0,312	0,422	0,385	0,275	0,138	0,266	-
4	7,53	1,027	1,054	0,321	0,266	0,385	0,367	0,513	0,477	0,330	0,193	0,321	-
5	8,99	1,210	1,201	0,403	0,312	0,468	0,449	0,706	0,651	0,403	0,266	0,376	-
6	10,36	1,375	1,357	0,523	0,358	0,523	0,513	0,990	0,917	0,513	0,358	0,431	-
7	12,92	1,568	1,540	0,752	0,440	0,651	0,642	1,632	1,495	0,770	0,477	0,532	-
8	14,69	1,605	1,770	0,908	0,972	0,743	0,734	2,127	1,962	-	-	0,605	-
9	16,65	1,944	2,274	1,091	1,229	0,844	0,844	2,677	2,494	-	-	0,688	-
10	18,38	2,613	2,934	1,302	1,495	0,954	0,963	3,182	2,998	-	-	0,770	-
11	19,90	3,237	3,952	1,595	1,742	1,064	1,036	3,613	3,393	-	-	0,889	-
12	20,65	3,897	-	1,953	2,054	1,164	1,128	3,787	3,585	-	-	0,963	-
13	21,21	4,447	-	2,219	2,375	1,265	1,220	3,961	3,732	-	-	0,981	-

¹⁾ Измерения производились после установки бандажа. Тензорезисторы 1*...6* установлены на бандаже над тензорезисторами 1...6.

Рис. 25. Деформации, измеренные по тензорезисторам 1...6 установленным на металле образца I3 и 1*...6* на бандаже.

Таблица 21. Изменения в весе образца I3.

Р, МПа	Вес G, кгс	ΔG, Γ
0	96,2*	0
12,21	96,5*	
21,21	96,4	300
22,76	96,7	600
24,81	97,2	1100
26,74	97,85	1750
27,90	98,65	2550
29,03	_	_
	P, МПа 0 12,21 21,21 22,76 24,81 26,74 27,90 29,03	P, МПаВес G, кгс096,2*12,2196,5*21,2196,422,7696,724,8197,226,7497,8527,9098,6529,03-

Примечания: * - Вес с арматурой и тензорезисторами. Далее без тензорезисторов. Температура воды при испытаниях 23 °С.

Рис. 26. Этапы нагружения внутренним давлением образца I3.

 P_P, P_{Π} - условно принимаемые рабочее и поверочное давления; P_T - давление текучести; P_B, P_B^* - максимальное давление, которое выдержал образец, и давление при котором произошло разрушение; 2 Ресивера - давление в двух спаренных ресиверах без подключенного образца.

I II III IV III IV III IV 1 6,9 6,6 6,8 6,6 6,7 6,7 7,0 7,4 7,2 7,0 6,9 6,7 7,1 6,3 6,5 5,7 5,7 5,7 5,6 5,8 5,8 5,3 6,3 6,4 6,5 6,5 7,7 5,6 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 6,3 6,4 6,5 6,5 6,7 7,7 7,8 5,8 6,3 6,4 6,5 6,8 7,2 7,8 5,8 6,4 6,5 6,6 6,7 7,7 7,8 7,8 5,8 6,0 6,4 6,5 6,8 6,7 7,7 7,8 7,8 7,8 7,8 5,8 6,0 6,4 6,4 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6	Γ			To	лщи	на по	осле	разру	ушен	ня, (мм).				Per	. №	I	3					dCp.
1 6,9 6,6 6,5 6,7 6,6 7,7 7,4 7,2 7,0 6,9 6,7 7,1 1 6,5 6,5 7,1 1 6,5 6,5 7,7 7,6 6,9 6,7 7,1 1 6,5 6,5 6,7 7,5 5,5 5,8 5,8 5,8 5,3 6,3 6,4 6,4 6,6 6,7 5,7 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,8 5,8 6,3 6,4 6,5 6,8 6,7 7,7 6,7 6,8 6,8 6,7 7,2 7,0 6,4 6,4 6,6 6,6 6,6 6,6 7,2 7,1 7,0 6,8 6,9 7,1 7,0 5,8 5,8 5,8 6,8 6,7 7,7 6,8 6,9 7,1 7,0 6,8 6,9 7,1 7,0 6,8 6,9 6,9 7,0 5,8 5,1 7,0]	I]	I			I	п			Ι	V		min	Cp.	max	ь	%
2 6,7 6,2 6,1 6,4 6,1 6,4 6,5 6,8 7,1 6,9 6,5 6,5 6,7 6,1 6,4 6,1 6,2 6,8 5,8 5,8 6,3 6,4 6,8 6,8 6,3 6,4 6,5 6,8 7,2 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,8 6,3 6,4 6,5 6,6 6,7 6,8 6,6 6,7 6,8 6,6 6,7 6,8 6,6 6,7 6,8 6,8 6,7 6,7 6,8 7,7 6,7 6,8 7,7 7,7 8,8 6,4 7,2 0,31 0 9 6,8 6,8 6,7 6,7 6,8 6,8 7,7 6,7 6,8 7,7 7,7 7,8 7,0 7,1 7,0 6,8 6,9 7,0 7,1 7,0 6,8 6,9 7,0 7,1 7,0 6,8 6,9 6,7 </td <td></td> <td>1</td> <td>6,9</td> <td>6,6</td> <td>6,8</td> <td>6,6</td> <td>6,5</td> <td>6,7</td> <td>6,6</td> <td>6,7</td> <td>6,7</td> <td>7,0</td> <td>7,4</td> <td>7,2</td> <td>7,0</td> <td>6,9</td> <td>6,7</td> <td>7,1</td> <td>6,5</td> <td>6,84</td> <td>7,4</td> <td>0,25</td> <td>5,7</td>		1	6,9	6,6	6,8	6,6	6,5	6,7	6,6	6,7	6,7	7,0	7,4	7,2	7,0	6,9	6,7	7,1	6,5	6,84	7,4	0,25	5,7
3 6,6 5,9 5,7 5,7 5,6 5,8 5,7 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,7 5,8 5,8 6,0 6,2 6,8 6,5 6,4 6,5 6,8 7,2 5,8 5,8 6,0 6,2 6,5 6,6 6,6 6,7 7,2 5,8 5,8 6,0 6,2 6,5 6,6 6,6 6,7 7,4 7,4 7,2 5,8 6,8 6,8 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,7 7,1 7,0 6,7 6,8 6,8 7,0 7,1 7,0 6,8 6,9 7,1 7,2 6,8 6,8 7,0 7,1 7,0 7,4 7,2 6,8 6,8 7,0 7,1 7,0 7,		2	6,7	6,2	6,1	6,2	6,1	6,4	6,1	6,4	6,5	6,8	7,1	6,9	6,5	6,5	6,5	6,7	6,1	6,48	7,1	0,30	0,2
I 4 6,5 6,0 5,7 5,8 5,8 6,3 6,1 6,3 6,8 6,5 6,8 7,2 8 6,2 7,2 0,4 5 6,2 7,2 0,4 5 6,4 5,8 5,3 5,4 6,0 6,0 5,7 6,0 6,1 6,2 6,5 6,6 6,8 6,9 7,2 8 6,6 6,8 6,7 6,7 6,8 6,8 6,7 7,0 6,8 6,8 6,7 6,7 6,6 6,7 7,0 7,0 7,0 7,0 7,1 7,0 7,0 7,1 7,0 7,0 7,1 7,0 7,0 7,1 7,3 7,0 7,4 7,2 6,3 6,4 6,3 6,6 6,5 6,7 6,5 6,7 7,0 7,1 7,7 7,0 7,0		3	6,6	5,9	5,7	5,7	5,6	5,8	5,8	6,3	6,3	6,4	6,8	6,8	6,3	6,4	6,4	6,9	5,6	6,23	6,9	0,43	-3,6
5 64 5,8 5,3 5,4 6,0 6,0 5,3 5,4 6,0 6,0 5,3 5,8 6,2 6,1 6,2 6,5 6,5 6,7 6,8 6,8 6,8 6,8 6,7 7,7 6,8 6,8 6,8 6,7 7,7 6,8 6,8 6,8 6,7 6,7 6,8 6,8 6,7 6,7 6,8 6,8 7,7 6,8 7,0 7,4 6,8 6,8 6,7 6,7 6,8 6,8 6,7 6,7 6,8 6,8 6,7 6,7 6,8 6,8 6,7 6,7 6,8 6,8 6,7 6,7 6,8 6,8 6,7 6,7 6,8 6,8 6,8 6,8 6,8 6,8 6,8 6,8 6,9 7,0 7,1 7,0 6,8 6,9 7,0 7,1 7,0 7,0 7,0 7,1 7,0 6,8 6,9 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0	Ι	4	6,5	6,0	5,7	5,8	5,7	5,8	5,8	6,3	6,1	6,3	6,8	6,5	6,4	6,5	6,8	7,2	5,7	6,26	7,2	0,45	-3,2
6 6,6 6,0 5,3 5,8 6,2 6,2 6,5 6,7 6,8 6,8 7,1 5,3 5,2 5,9 6,3 6,6 6,4 6,5 6,6 6,7 6,7 6,6 6,6 6,7 6,7 6,8 6,9 6,9 7,2 7,0 7,1 7,0 6,6 6,7 7,4 7,2 0,31 4 4 6,6 6,7 6,7 6,7 6,8 6,9 6,9 7,2 7,0 7,1 7,0 6,6 6,7 6,7 6,8 6,9 7,1 7,2 6,5 6,5 6,7 </td <td></td> <td>5</td> <td>6,4</td> <td>5,8</td> <td>5,3</td> <td>5,4</td> <td>6,0</td> <td>6,0</td> <td>5,7</td> <td>6,0</td> <td>6,1</td> <td>6,2</td> <td>6,8</td> <td>6,5</td> <td>6,6</td> <td>6,8</td> <td>6,9</td> <td>7,2</td> <td>5,3</td> <td>6,23</td> <td>7,2</td> <td>0,55</td> <td>-3,6</td>		5	6,4	5,8	5,3	5,4	6,0	6,0	5,7	6,0	6,1	6,2	6,8	6,5	6,6	6,8	6,9	7,2	5,3	6,23	7,2	0,55	-3,6
7 6.3 6.2 5.9 6.6 6.6 6.7 6.7 6.8 7.2 5.9 6.43 7.2 0.34 -0 8 6.6 6.6 6.4 6.5 6.2 5.9 6.0 6.2 6.6 6.8 6.8 6.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 6.8 6.9 7.2 0.31 0.0 9 6.8 6.7 6.7 6.4 6.4 6.6 6.9 7.2 7.1 7.0 6.8 6.9 7.2 0.5 6.8 6.8 6.9 7.2 0.7 7.1 6.8 6.9 7.2 0.23 5.5 6.5 6.3 6.4 6.5 6.7		6	6,6	6,0	5,3	5,8	6,2	6,1	5,8	5,8	6,0	6,2	6,5	6,5	6,7	6,8	6,8	7,1	5,3	6,26	7,1	0,48	-3,2
8 6,6 6,6 6,4 6,5 6,2 5,9 6,0 6,2 6,6 6,8 6,8 6,7 6,7 6,8 7,0 9 6,8 6,8 6,7 6,7 6,6 6,4 6,1 6,2 6,6 7,2 7,1 7,0 6,8 6,9 7,0 7,1 6,8 6,9 7,2 6,6 6,6 6,5 6,7 6,4 6,6 6,7 6,4 6,6 6,7 6,7 6,4 6,6 6,7 7,0 7,1 7,0 6,8 6,9 7,2 6,5 6,8 6,8 6,8 6,8 6,8 6,8 6,5 7,0 7,1 7,0 6,6 6,5 7,0 7,4 7,2 6,5 6,5 6,7 6,4 6,3 6,4 6,5 6,5 6,8 6,8 6,8 6,6 6,5 7,0 7,4 7,2 6,5 6,5 6,7 6,8 6,4 6,7 6,6 6,5 6,7 6,8 6,4 6,7 6,6 6,5 6,5 6,5 6,5 6,5<		7	6,3	6,2	5,9	6,3	6,6	6,2	6,0	6,1	6,2	6,5	6,6	6,6	6 ,7	6,7	6,8	7,2	5,9	6,43	7,2	0,34	-0,5
9 6,8 6,8 6,7 6,7 6,6 6,4 6,1 6,2 6,6 7,2 7,1 7,0 6,8 6,9 7,2 7,0 7,1 6,8 6,9 7,2 7,0 7,1 6,8 6,9 7,2 7,0 7,1 6,8 6,9 7,2 7,0 7,1 7,0 6,6 6,6 6,6 6,6 6,7 6,		8	6,6	6,6	6,4	6,5	6,5	6,2	5,9	6,0	6,2	6,6	6,8	6,8	6,7	6,7	6,8	7,0	5,9	6,52	7	0,31	0,8
10 6.8 4 6.6 6.7 6.4 6.4 6.6 6.9 7.2 7.0 7.1 6.8 6.9 7.2 6.4 6.8 7.2 0.25 5.5 II 10 6.72 6.6 6.6 6.5 6.7 6.9 7.0 7.1 7.0 7.0 6.4 6.2 7.2 0.23 5.5 II 12 6.6 6.6 6.5 6.7 6.9 7.0 7.1 7.0 7.0 7.4 7.2 6.5 6.85 7.2 0.23 5.5 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.9 7.0 7.4 7.2 7.6 7.3 7.0 7.4 6.3 6.7 6.4 6.7 6.6 6.7 6.8 6.8 6.9 6.7 6.8 6.		9	6,8	6,8	6,7	6,7	6,6	6,4	6,1	6,2	6,6	7,2	7,1	7,0	6,8	6,9	6,9	7,0	6,1	6,74	7,2	0,31	4,2
11 6,72 6,6 6,6 6,5 6,7 6,9 7,0 7,1 7,0 7,0 6,5 6,5 7,2 0,23 5 II 12 6,6 6,3 6,4 6,3 6,4 6,3 6,4 6,5 6,8 6,8 6,8 6,8 6,6 6,5 7,0 7,4 7,2 7,4 0,32 3 6,3 6,4 6,5 6,7 6,5 6,7 7,0 7,4 7,0 7,0 7,0 7,4 7,4 0,32 3 6,3 6,4 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 7,0 7,4 7,4 0,32 3 6,3 6,7 6,4 6,7 6,5 6,7 7,0 7,4 7,4 0,34 4 4 15 6,4 6,7 6,5 6,5 6,5 6,5 6,5 6,5 6,7 7,0 7,0 7,4 7,4 0,34 4 5,0 5,0 6,2 6,2 6,5 6,5 6,5 6,5 6,5 6,5		10	6,8		4	6,6	6,7	6,4	6,4	6,6	6,9	7,2	7,0	7,1	6,8	69	6,9	7,2	6,4	6,82	7,2	0,26	5,5
II 12 6,6 6,3 6,4 6,3 6,6 6,8 6,8 6,8 6,8 6,6 6,7 7,0 7,4 7,2 7,4 0,32 3 13 6,5 13 6,5 6,5 6,3 6,4 6,5 6,8 6,8 6,8 6,8 6,8 6,8 6,8 6,6 7,0 7,4 7,2 7,4 7,4 7,4 0,32 3 3 6,7 7,4 0,32 3 6,3 6,7 7,4 0,32 3 6,3 6,7 7,4 0,32 3 3 6,7 7,4 0,32 3 6,3 6,7 7,4 0,32 3 6,3 6,7 7,4 0,32 3 3 6,7 7,4 0,32 3 3 6,7 7,4 0,32 3 3 6,7 7,4 0,32 3 3 6,7 7,4 0,32 3 3 6,7 7,4 7,4 0,32 3 3 6,1 6,3 6,7 6,5 6,5 6,5 6,5		11	6,72			6,6	6,6	6,5	6,7	6,9	7,0	7,1	7,0	7,0	6.5	6,9	7,1	7,2	6,5	6,85	7,2	0,23	5,9
13 6,5 - 3 6,5 6,5 6,4 6,5 6,8 7,0 6,9 7,4 7,0 6,3 6,7 7,4 0,34 4 14 6,5 6,2 6,6 6,7 6,5 6,1 6,5 6,8 7,0 6,9 7,3 7,0 7,1 7,1 7,1 6,1 <td>Π</td> <td>12</td> <td>6,6</td> <td></td> <td>=</td> <td>6,3</td> <td>6,4</td> <td>6,3</td> <td>6,6</td> <td>6,8</td> <td>6,8</td> <td>6,8</td> <td>6,8</td> <td>6,6</td> <td>6,5</td> <td>7,0</td> <td>7,4</td> <td>7,2</td> <td>6,3</td> <td>6,72</td> <td>7,4</td> <td>0,32</td> <td>3,9</td>	Π	12	6,6		=	6,3	6,4	6,3	6,6	6,8	6,8	6,8	6,8	6,6	6,5	7,0	7,4	7,2	6,3	6,72	7,4	0,32	3,9
14 6,5 6,2 6,6 6,7 6,5 6,1 Линия разрушения 7,2 7,5 7,3 7,0 6,1 6,1 6,7 6,7 6,4 1 16 6,2 6,1 6,2 6,4 5,4 5,5 5,9 6,2 6,5 6,4 6,7 6,6 6,8 6,9 6,5 18 6,4 6,1 6,1 5,1 5,4 5,1 5,9 6,2 6,5 6,4 6,7 6,6 6,8 6,9 6,5 18 6,4 6,1 6,0 5,9 6,3 5,5 6,2 6,1 6,3 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,6 6,8 6,9 6,5 5,3 6,1 6,3 6,7 6,5 6,4 5,7 6,2 6,5 6,6 6,1 6,3 6,7 6,5 6,4 5,7 6,2 6,1 6,3 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7		13	6,5	_	3	6,5	6,5	6,3	6,4	6,5	6,8	7,0	6,9	7,0	6,9	5 ,3	7,4	7,0	6,3	6,79	7,4	0,34	4,9
15 6,4 6,3 6,4 6,8 6,0 5,0 5,1 6,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 6,2 6,2 6,4 6,2 6,4 6,7 6,6 6,8 6,9 6,5 6,4 6,7 6,8 6,8 6,4 6,1 6,0 5,9 6,3 6,5 6,6 6,7 6,8 6,8 6,4 6,1 6,8 6,9 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,7 6,8 6,8 6,1 6,1 6,1 6,1 6,1 6		14	6,5	6,2	6,6	6,7	6,5	6,1	Ли	ния	pas	nvii	ени	я	7,2	7,5	7,3	7,0	6,1	6,78	7,5	0,41	4,8
16 6,2 6,1 6,2 6,4 5,4 5,9 6,2 6,5 6,4 6,7 6,6 6,8 6,9 6,5 5,4 6,2 6,5 5,9 6,2 6,5 6,4 6,7 6,6 6,8 6,9 6,5 5,4 6,4 6,7 6,8 6,9 6,5 5,4 5,4 5,1 5,2 5,2 5,2 5,2 5,2 6,2 6,5 6,5 6,4 6,7 6,8 6,4 6,4 6,1 6,0 5,9 5,8 5,1 5,2 5,2 6,2 6,5 6,2 6,1 6,3 6,7 6,8 6,4 6,4 6,7 0,5 6,4 5,7 6,2 6,5 6		15	6,4	6,3	6,4	6,8	6,9	5,9		0,1	0,1	0,0	0,0	· ,2	7,1	7,1	7,1	6,6	5,9	6,54	7,2	0,44	1,2
17 6,3 6,2 6,1 6,1 5,1 5,4 5,1 5,9 6,3 6,5 6,0 6,6 6,7 6,8 6,8 6,4 5,1 6,1 6,3 6,7 6,8 6,8 6,4 5,1 6,1 6,3 6,7 6,8 6,8 6,4 5,1 6,1 6,3 6,7 6,5 6,4 5,2 6,1 6,3 6,7 6,5 6,4 5,2 6,1 6,3 6,7 6,5 6,4 5,2 6,1 6,3 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,5 6,4 6,7 6,7 6,3 6,4 6,4 6,7 6,3 6,4 6,4 6,7 6,5 6		16	6,2	6,1	6,2	6,4	5,4	5,6	5,5	5,9	6,2	6,5	6,4	6,7	6,6	6,8	6,9	6,5	5,4	6,24	6,9	0,45	-3,4
18 6,4 6,1 6,0 5,9 5,2 5,2 6,2 6,5 6,6 6,1 6,3 6,7 6,7 6,5 6,4 5,2 6,13 6,7 0,50 -5,7 111 19 6,1 6,0 5,9 5,8 5,1 5,6 5,7 6,2 6,5 6,2 6,1 6,7 6,8 6,4 20 6,2 6,0 6,0 6,1 3,5 6,0 6,1 6,5 6,9 6,7 6,3 21 6,1 6,2 6,2 6,0 5,6 6,2 6,2 6,5 6,5 6,5 6,5 6,5 6,3 6,9 7,1 6,9 6,1 6		17	6,3	6,2	6,1	6,1	5,1	5,4	5,1	5,9	6,3	6,5	6,0	6,6	6,7	6,8	6,8	6,4	5,1	6,14	6,8	0,54	-5,0
III 19 6,1 6,0 5,9 5,8 5,1 5,6 5,7 6,2 6,2 6,1 6,2 6,4 6,7 6,8 6,4 20 6,2 6,0 6,0 6,1 5,5 6,0 5,9 6,4 6,3 6,3 6,0 6,1 6,5 6,9 6,7 6,3 21 6,1 6,2 6,2 6,0 6,2 6,2 6,2 6,5 6,5 6,5 6,3 6,9 7,1 6,9 6,4 5,5 6,20 6,9 0,33 -4, 22 6,7 6,4 6,7 6,5 6,5 6,5 6,5 6,5 6,9 6,7 6,3 5,5 6,20 6,9 0,33 -4, 22 6,7 6,4 6,7 6,5 6,1 6,7		18	6,4	6,1	6,0	5,9	ø	5,2	5,2	6,2	6,5	6,6	6,1	6,3	6,7	6,7	6,5	6,4	5,2	6,13	6,7	0,50	-5,2
20 6,2 6,0 6,0 6,1 \$,5 6,0 6,7 6,3 21 6,1 6,2 6,2 6,0 5,6 6,2 6,2 6,6 6,5 6,5 6,3 6,9 7,1 6,9 6,4 22 6,7 6,4 6,7 6,5 6,5 6,5 6,5 6,3 6,9 7,1 6,9 6,4 22 6,7 6,4 6,7 6,5 6,7<	ш	19	6,1	6,0	5,9	5,8	5,1	5,6	5,7	6,2	6,5	6,2	6,1	6,2	6,4	6,7	6,8	6,4	5,1	6,11	6,8	0,43	-5,6
21 6,1 6,2 6,2 6,2 6,6 6,5 6,5 6,3 6,9 7,1 6,9 6,4 5,6 6,39 7,1 0,38 -1, 22 6,7 6,4 6,7 6,5 6,1 6,4 6,7 6,7 6,7 6,9 7,0 7,3 7,4 6,9 6,7 6,1		20	6,2	6,0	6,0	6,1	\$,5	6,0	5,9	6,4	6,3	6,3	6,0	6,1	6,5	6,9	6,7	6,3	5,5	6,20	6,9	0,33	-4,1
22 6,7 6,4 6,7 6,7 6,7 6,9 7,0 7,3 7,4 6,9 6,7 6,1 6,1 6,3 6,7 6,7 6,7 6,9 7,0 7,3 7,4 6,9 6,7 6,1 6,1 6,1 6,1 6,2 6 6,1 6,3 6,4 6,4 6,3 6,7 6,5 6,1 6,3 6,4 6,4 6,3 6,7 6,5 6,1 6,3 6,4 6,4 6,3 6,5 6,7 6,5 6,5 6,5 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7		21	6,1	6,2	6,2	6,0	Þ,6	6,2	6,2	6,6	6,5	6,5	6,5	6,3	6,9	7,1	6,9	6,4	5,6	6,39	7,1	0,38	-1,2
min 6,1 5,8 5,4 5,1 5,2 5,1 5,8 6 6,2 6 6,1 6,3 6,4 6,4 6,3 Cp. 6,50 6,20 6,11 6,24 6,03 6,07 6,00 6,33 6,47 6,65 6,70 6,73 6,72 6,88 6,85 6,85 max 6,9 6,8 6,8 6,7 6,7 6,9 7 7,2 7,4 7,2 7,3 7,5 7,4 7,2 σ 0,23 0,26 0,44 0,39 0,53 0,38 0,43 0,32 0,29 0,33 0,34 0,26 0,28 0,26 0,33 σ 0,23 0,26 0,44 0.39 0,53 0,38 0,43 0,32 0,29 0,33 0,34 0,26 0,28 0,26 0,33 min Cp. max σ n Cp-3σ Cp+3σ Циллиндр		22	6,7	6,4	6,7	6,5	6,1	6,4	6,4	6,7	6,7	6,7	6,9	7,0	7,3	7,4	6,9	6,7	6,1	6,72	7,4	0,34	3,9
min 6,1 5,8 5,3 5,4 5,1 5,2 5,1 5,8 6 6,2 6 6,1 6,3 6,4 6,4 6,3 Cp. 6,50 6,20 6,11 6,24 6,03 6,07 6,00 6,33 6,47 6,65 6,70 6,73 6,72 6,88 6,88 6,85 max 6,9 6,8 6,8 6,7 6,7 6,7 6,9 7 7,2 7,4 7,2 7,3 7,5 7,4 7,2 σ 0,23 0,26 0,44 0,39 0,53 0,38 0,43 0,32 0,29 0,33 0,38 0,34 0,26 0,28 0,26 0,33 σ 0,23 0,26 0,44 0,39 0,53 0,38 0,43 0,32 0,29 0,33 0,38 0,34 0,26 0,28 0,26 0,33 TOЛЩИНА, ММ min Cp. max σ	_																						
Ср. 6,50 6,20 6,11 6,24 6,03 6,07 6,00 6,33 6,47 6,65 6,70 6,73 6,72 6,88 6,88 6,85 max 6,9 6,8 6,8 6,7 6,7 6,7 6,9 7 7,2 7,4 7,2 7,3 7,5 7,4 7,2 σ 0,23 0,26 0,44 0,39 0,53 0,38 0,43 0,32 0,29 0,33 0,38 0,34 0,26 0,28 0,26 0,33 Толщина, мм min Cp. max σ n Cp-3σ Cp+3σ Цилиндрическая часть 5,1 6,47 7,5 0,46 344 5,08 7,85	1	nın	6,1	5,8	5,3	5,4	5,1	5,2	5,1	5,8	6	6,2	6	6,1	6,3	6,4	6,4	6,3					
max 6.9 6.8 6.8 6.7 6.7 6.7 6.9 7 7.2 7.4 7.2 7.3 7.5 7.4 7.2 σ 0.23 0.26 0.44 0.39 0.53 0.38 0.43 0.32 0.29 0.33 0.34 0.26 0.28 0.26 0.33 Толщина, мм min Cp. max σ n Cp-3σ Cp+3σ Цилиндрическая часть 5,1 6,47 7,5 0,46 344 5,08 7,85		р.	6,50	6,20	6,11	6,24	6,03	6,07	6,00	6,33	6,47	6,65	6,70	6,73	6,72	6,88	6,88	6,85					
σ 0,23 0,26 0,44 0,39 0,53 0,38 0,43 0,32 0,29 0,33 0,38 0,34 0,26 0,28 0,26 0,33 Толщина, мм min Cp. max σ n Cp-3σ Cp+3σ Цилиндрическая часть 5,1 6,47 7,5 0,46 344 5,08 7,85	1	nax	6,9	6,8	6,8	6,8	6,7	6,7	6,7	6,9	7	7,2	7,4	7,2	7,3	7,5	7,4	7,2					
Толщина, мм min Ср. max σ n Ср-3σ Ср+3σ Цилиндрическая часть 5,1 6,47 7,5 0,46 344 5,08 7,85	σ 0,23 0,26 0,44 0,39 0,53 0,38 0,43 0,32 0,29 0,33 0,38 0,34 0,26 0,28 0,26 0,33																						
Полщина, мм min Cp. max σ n Cp-3σ Cp+3σ Цилиндрическая часть 5,1 6,47 7,5 0,46 344 5,08 7,85																							
цилиндрическая часть 3,1 0,47 7,3 0,40 344 3,08 7,83		олщ	ина	, MN						m	m	6	р. 47	m 7	ax 5	0	16	n 244	- Op	-30 08	- Cp 7	⊤30 05	
	ц	или	ндр	иче	CKd	1 420	ТЬ				, .	- 0,	+7	1	<i>.</i> ,	0,	+0	344	J,	00	/,	65	
Топщизани																			То		ца	мм	
Условный min Условный max			Усл	овны	ıй mi	in									V	лов	ный	max	образен				
Шкала 5.1 5.41 5.57 5.73 5.88 6.04 6.19 6.35 6.51 6.66 6.82 6.98 7.13 7.29 7.44 7.6 13	Ш	кала	5.1	5.41	5.57	5.73	5.88	6.04	6,19	6,35	6,51	6,66	6.82	6,98	7,13	7,29	7.44	7.6		T T	3	`	

Рис. 27. Карта толщин стенки образца ІЗ после разрушения, мм.

На рисунке указано положение трещины, образовавшейся при разрушении образца, белой точкой указано начало разрушения. Горизонтальными и вертикальными линиями указаны, установленные на образец кольцевые и осевые тензорезисторы. Все остальные обозначения как и на рис. 4.

Характер разрушения металла образца вязкий. Толщина металла трубы в трещине, замеренная штангенциркулем ~ 4,5 мм. Максимальное раскрытие трещины в трубе 35,5 мм. Длина трещины ~ 280 мм. После разрезания бандажа в осевом направлении и отделении его от металла трубы, образовался зазор ~ 4 мм.

Рис. 28. Обведенный контур сечения дефекта в кольцевом направлении после разрушения образца I3.

Рис. 29. Фото образца ІЗ после разрушения:

а - образец после испытаний; б - в процессе раскрытия дефекта; в - после полного раскрытия дефекта; г - заполнитель дефекта; д - вырезанный элемент дефекта.

Образец I4 без дефекта и с бандажом по всей цилиндрической поверхности. Протокол замеров и испытаний.

Нагружение образца внутренним давлением производилось ступенчато, после каждого этапа давление сбрасывалось до нуля.

Хронология измерений и нагружения образца внутренним давлением:

- этап 1...7 - измерение в водяной рубашке изменений объема образца до начала пластических деформаций (без бандажа);

- этап 1...5 - измерение деформаций на поверхности трубы по тензорезисторам, (без бандажа);

- установка бандажа;

- этап 1...6 - измерение деформаций на поверхности трубе и бандаже по тензорезисторам;

- этап 1...19 - измерение в водяной рубашке изменений объема образца;

- этап 20...26 - измерение деформаций бандажа по периметрам, определение изменений в весе.

Для изготовления образца использована гильза № 5. Вес гильзы: 33,2 кгс.

Таблица 22. Длина цилиндрической части образца I4 и осевые размеры в первоначальном состоянии и после разрушения.

№	По середине сектора	Ι	II	III	IV	Среднее
	В первоначальном с	остояни	И			
1	Длина гильзы, l _o , мм	948,5	951	952	950	950,375
2	Длина между внутренними поверхностями пластин (днищ) после приварки, мм	954	957	959	956	956,50
3	Расстояние между сечениями І-ІІІ	646	648	648,5	645	646,88
4	Расстояние между сечениями І-ІІ	322	321,5	320	321,5	321,25
5	Расстояние между сечениями II-III	324	327,5	328	323,5	325,75
	После разруше	ния				
2	Длина между внутренними поверхностями пластин (днищ) после приварки, мм	964	965	965	962	964,00
3	Расстояние между сечениями І-ІІІ					
4	Расстояние между сечениями І-ІІ	337,0	325,5	324,0	325,5	328,00
5	Расстояние между сечениями II-III	326,5	329	330	325,5	327,75

Примечания: Измерения производились в средней части секторов I...IV, (см рис. 1). Расстояния между сечениями определялось по керненным точкам. Расстояния между сечениями I-II после разрушения измерялись вдоль выпучившейся поверхности.

Таблица 23. Периметры образца I4 в первоначальном состоянии (P_H) и после разрушения (P_K).

Сечение →	Ι	II	III	Среднее	Сечение 7
Периметр, Р _Н , мм	693,2	692,8	693	693,00	692,9
Периметр, Р _К , мм	700,5	703,0	700,5	701,33	759

Примечание: обозначение сечений см. на рис. 1.

Участок	T.	Ceu	4. I	Сеч	r. II	Сеч	. III
		$l_{ m H}$	$l_{\rm K}$	$l_{ m H}$	$l_{\rm K}$	$l_{\rm H}$	l _K
1-2	1	42,6	42,8	42,8	43,5	42,8	43,0
2-3	2	43,7	44,5	43,3	43,8	44	45,0
3-4	3	44,2	44,8	43,4	44,0	44	44,6
4-5	4	42,6	43,0	43	43,8	43	43,5
5-6	5	42,2	42,6	43	43,5	43	43,6
6-7	6	43,6	44,0	44,8	45,0	43,5	44,0
7-8	7	44,6	45,0	45	45,8	44,3	45,0
8-9	8	42,4	42,8	42,5	43,0	42,8	43,4
9-10	9	42,5	43,2	42,8	43,4	42,6	42,8
10-11	10	44,7	45,0	43,3	43,6	42,4	42,6
11-12	11	44,5	44,8	43,5	44,0	42	42,2
12-13	12	42,2	42,6	42,5	43,0	42,8	43,0
13-14	13	43,2	43,6	42,8	43,2	43,2	44,0
14-15	14	43,6	44,0	43,6	44,0	44,2	44,4
15-16	15	44	44,6	43	43,8	44,8	45,2
16-1	16	42	42,8	42,8	43,4	43	43,6
Сумма		692,6	700,1	692,1	700,8	692,4	699,9
Среднее		43,29	43,76	43,26	43,80	43,28	43,74

Таблица 24. Длина баз в сечениях I, II, III образца I4, в первоначальном состоянии (l_H) и после разрушения (l_K), (мм).

Примечание: Обозначение сечений см. на рис. 1.

		1	Голц	цина	Толщина при первичном осмотре, (мм). Рег. № І4 І ІІ ІІ ІІ ІІ															~		dCp.
				I			I	I			I	Π			Ι	V		mir	Cb	max	ь	%
	1	6,2	6,3	6,0	6,3	6,5	6,6	6,7	6,9	6,8	6,8	6,8	7,4	7,0	6,7	6,1	6,4	6	6,59	7,4	0,37	0,7
	2	6,4	6,3	6,0	6,1	6,2	6,5	6,8	6,8	7,0	7,0	7,2	7,1	6,7	6,5	6,1	6,1	6	6,55	7,2	0,40	0,0
	3	6,3	6,4	5,9	П		a na	onv		πιπ	,2	7,3	7,3	6,9	6,4	6,2	6,2	5,9	6,60	7,3	0,47	0,8
Ι	4	6,6	6,4	5,9	1,0	ипи •••	лра	uspy.	шсг. •,•	ил 7,1	-,1	7,1	7,0	6,7	6,5	6,0	6,4	5,8	6,54	7,1	0,42	-0,2
	5	6,6	6,3	\$,9	5,9	5,9	6,4	6,7	6,6	6,9	7,0	7,0	7,1	6,7	6,6	6,4	6,5	5,9	6,53	7,1	0,39	-0,2
	6	6,4	6,1	5,8	5,9	6,1	6,5	6,9	6,5	6,7	6,9	7,0	7,0	6,7	6,8	6,5	6,5	5,8	6,52	7	0,38	-0,4
	7	6,3	6,2	6,0	6,2	6,3	6,9	6,8	6,5	6,7	6,7	6,9	6,9	6,7	6,8	6,5	6,4	6	6,55	6,9	0,29	0,0
	8	6,4	6,1	6,1	6,2	6,5	6,7	6,8	6,6	6,6	6,7	7,0	7,1	6,8	6,5	6,5	6,3	6,1	6,56	7,1	0,29	0,1
	9	6,6	6,2	6,2	6,4	5,4	6,8	6,6	6,4	6,6	6,8	-7,2	6,8	6,4	6,4	6,3	6,3	6,2	6,53	7,2	0,27	-0,3
	10	6.2	6.2	6,3	19	6,6	6,7	*(1:	3) 6,6	67	11	7,3	6,9	6,5	12	6,4	6,4	6,2	6,58	7,3	0,34	0,5
	11	6,4	6,1	5,9	6,1	63	6,5	6,4	6,5	70	7,3	7,2	6,8	65	6,4	6,3	6,4	5,9	6,51	7,3	0,39	-0,6
п	12	6,0	5,9	6,0	6,0	6,3	6,6	6,6	ó,8	7,1	7,2	7,0	ó,8	6,6	6,2	6,5	6,5	5,9	6,54	7,2	0,39	-0,1
	13	6,7 ¹	5,9	5,92	2 6,0	6,3	3 6,4	6,5	6 ,8	7,0	5 7,2	7,0	6 6 ₇	6,4	6,5	6,8	8 6,7	5,9	6,55	7,2	0,39	0,0
	14	64	2.2	129	1,9	2641	49,6	6,5	6,6	6,8	7,0	6,9	6,7	67	66	(f7)	6,6	5,9	6,51	7	0,34	-0,5
	15	6,3	6.0	5.7	6,1	6,5	6,4	6,5	6,6	6,9	6,9	6,9	7,0	69	ó,ó	ó,ó	ó,4	5,7	6,52	- 7	0,37	-0,4
	16	6,9	*110	5 jō,9	6,5	6,7	6,5	6,6	6,7	6,8	7,1	7,0	612	*(18	3) 6,7	6,5	6,5	5,9	6,56	7,1	0,34	0,2
	17	6,2	6,2	6,2	6,4	6,7	6,4	6,5	6,4	7,0	7,0	7,0	6,7	6,7	6,4	6,5	6,4	6,2	6,54	7	0,28	-0,1
	18	6,3	6,2	6,2	6,3	6,4	6,9	6,3	6,3	6,9	7,3	6,8	6,8	6,5	6,5	6,4	6,2	6,2	6,52	7,3	0,33	-0,4
ш	19	6,5	6,2	6,2	6,5	6,5	6,3	6,4	6,5	7,2	7,2	6,8	6,6	6,3	6,5	6,8	6,3	6,2	6,55	7,2	0,31	0,0
	20	6,3	6,2	6,0	6,4	6,7	6,5	6,8	6,9	7,1	7,2	7,0	6,5	6,3	6,8	6,5	6,5	6	6,61	7,2	0,34	0,9
	21 6,2 5,9 6,1 6,0 6,3 6,6 6,7 6,7 7,1 7,0 6,8 6,4 6,4 6,9 6,7											6,2	5,9	6,50	7,1	0,37	-0,7					
	22	6,3	6,2	6,1	6,4	6,3	6,5	6,7	6,7	7,1	7,0	6,8	6,6	6,7	6,9	6,7	6,4	6,1	6,59	7,1	0,29	0,6
1	nin	6,1	5,9	5,7	5,8	5,9	6,3	6,3	6,3	6,6	6,7	6,8	6,4	6,3	6,2	6	6,1					
	р.	6,38	6,14	6,01	6,17	6,38	6,55	6,62	6,63	6,92	7,04	7,00	6,86	6,63	6,57	6,45	6,39					
1	max 6,7 6,4 6,3 6,5 6,7 6,9 6,								6,9	7,2	7,3	7,3	7,4	7	6,9	6,8	6,7					
	σ 0,16 0,16 0,15 0,21 0,20 0,16 0,16								0,16	0,19	0,19	0,16	0,25	0,19	0,19	0,22	0,14					<u> </u>
																		_				
Толщина, мм min Cp. max σ n Cp												ρ-3σ	Ср	+3σ								
Ц	или	ндр	иче	ская	н ча	сть			5	,7	6,	55	7	,4	0,	35	352	5	,51	7,	59	
	., u.,													Толщина, мм								
														O6p	aser	Ţ						
Ш	кала	- 5	5,3	5,45	5,6	5,75	5,9	6,05	6,2	6,35	6,5	6,65	6,8	6,95	7,1	7,25	7,4		1	4		

Рис. 30. Толщина стенки образца І4 в первоначальном состоянии, мм.

Сечение II находится между 11 и 12-й строкой, однако толщины для него мы берем по 12 строке. Знаком (*) указаны тензорезисторы наклеенные на бандаже. Все остальные обозначения, как и на рис. 4. На рисунке указано положение трещины, образовавшейся при разрушении образца, белой точкой указано начало разрушения. Горизонтальными и вертикальными линиями указаны установленные на образец кольцевые и осевые тензорезисторы.

Рис. 31. Образец І4 до намотки бандажа.

а - общий вид образца I4; б - приваренная гильза для закрепления в патрон станка; в - приварка верхней пластины; г - приваренная гайка для упора в заднюю бабку станка; д - приварка нижней пластины.

Вес сваренного образца: 61,8 кгс. Вес сваренного образца с водой: 93,6 кгс, Температура воды: 10 °С. Вес воды: 331,8 кгс. Принимаемый внутренний объем образца 31,8 л. Вес бандажа составил 3,6 кгс, Вес тензорезисторов с проводами - 0,1 кгс. Длина сварного шва вдоль оси трубы порядка 10 мм.

Таблица 25. Периметры образца I4 в первоначальном состоянии - Р_Н, в процессе испытаний после извлечения из водяной рубашки - Р и после разрушения - Р_К, мм.

	P, Bec G, ΔG, Периметр, мм. ΜΠа кгс г									
		МΠа	кгс	Г			периме	тр, мм.		
Сечение →					Ι	II	-	III	7	-
До уст-ки бандажа	$P_{\rm H}$				693,2	692,8		693,0	692,9	
Сечение →					I*	II*	II**	III*	7	7*
После уст-ки		0	07.2		700.2	712.0	709 4	710.9	602.0	709.9
бандажа		0	97,5		709,2	/12,0	706,4	/10,8	092,9	700,0
После этапа	19		97,5 ¹⁾							
	19	27,02	98,5	200	711,2	715,2	710,8	712,2	697,6	710,8
	20	28,60	98,5	200	711,6	716,5	711,5	713,0	699,0	711,6
	21	30,10	98,6	300	712,4	717,0	712,4	714,0	700,8	712,8
	22	31,60	98,7	400	713,2	717,8	712,8	714,4	702,0	713,8
	23	33,10	98,8	500	713,6	718,2	713,4	715,2	703,5	714,0
	24	35,10	99,0	700	714,8	719,6	714,5	716,0	705,2	715,2
	25	37,10	99,1	800	715,4	719,8	715,0	716,5	707,2	715,8
	26	39,60	-	-	715,6	720,2	715,2	717,2	759	-
Толщина бандажа, мм	л, (ори	ентирон	вочно)		2,5		2,5	-		
					Ι	II	-	III	7	-
После снятия бандажа	P _K				700,5	703,0		700,5	759	

Примечания: Сечение I находится на расстоянии 150 мм от верха гильзы, а в сваренном образце на расстоянии 155 мм от ближнего днища. Сечение II находится посередине гильзы, а в сваренном образце на расстоянии 475 мм от ближнего днища. Сечение III находится на расстоянии 150 мм от низа гильзы, а в сваренном образце на расстоянии 155 мм от ближнего днища. Сечение 7 (7-е сверху) в сваренном образце на расстоянии 280 мм от ближнего днища. 7* - сечение на бандаже, соответствующее сечению 7 трубы, но расположенное на 20 мм, ниже от разреза бандажа. Сечения, обозначенные знаком * соответствуют бандажу. Сечение II** смещено выше датчиков. Ширина ленты рулетки 10 мм., толщина 0,2 мм. Ширина паза порядка 25 мм.¹⁾ - Вес без учета арматуры, в остальных случаях указан вес с учетом арматуры.

Таблица 26. Деформации $\times 10^3$ по тензорезисторам на образце I4 до установки бандажа.

								1 .							
			тензорезисторы												
					колы	цевые					oc	евые			
Этап	Р, МПа	1	2	3	4	5	6	7	8	9	10	11	12		
0	0	0	0	0	0	0	0	0	0	0	-	0	0		
1	3,68	0,269	0,215	0,296	0,153	0,242	0,251	0,188	0,265	0,063	-	0,054	0,054		
2	6,56	0,476	0,404	0,520	0,292	0,431	0,458	0,332	0,467	0,117	-	0,099	0,099		
3	8,52	0,619	0,529	0,682	0,377	0,547	0,583	0,440	0,610	0,153	-	0,126	0,126		
4	11,85	0,843	0,745	0,933	0,538	0,772	0,817	0,619	0,852	0,215	-	0,179	0,179		
5	12,57	0,897	0,803	1,000	0,583	0,812	0,875	0,664	0,906	0,229	-	0,188	0,188		

Примечание: Тензометрирование производилось после предварительных нагружений в водяной рубашке (после этапа 7).

Намотка бандажа: усилие натяжения ровинга 4,2±0,6 кгс, шаг вдоль оси образца 2,36 мм/об, число слоев 8. Вес бобины ровинга до намотки 6,68 кгс, после намотки 3,80 кгс. Вес ровинга ушедшего на намотку 2,88 кгс. Температурный режим полимеризации бандажа: 120 °C - 20 часов. Полимеризация происходила в несколько смен: поднятие температуры до 120 °C и последующая выдержка несколько часов.

После установки бандажа, из него было вырезано кольцо, (по сечению 7) с образованием паза шириной ~ 26 мм. Толщина кольца бандажа по 18-и замерам составила 2,5±0,2 мм. Для того чтобы снять кольцо с образца был проделан осевой паз. Кольцо легко отстало от трубы и увеличение осевого паза после разрезки кольца и его отъединения от трубы составило 3,2 мм.

Рис. 32. Вырезанное кольцо из бандажа.

Рис. 33. Тензорезисторы на поверхности трубы перед установкой бандажа (а) и на бандаже (б).

Тензорезисторы, установленные на бандаж, располагались поверх тензорезисторов на поверхности трубы.

			тензорезисторы										
		кольцевые							осевые				
Этап	Р, МПа	1	2	3	4	5	6	7	8	9	10	11	12
0	0	-	0	-	0	-	-	0	-	0	-	-	0
1	2,14	-	0,126	-	0,031	-	-	0,085	-	0,045	-	-	0,027
2	3,83	-	0,229	-	0,063	I	I	0,166	I	0,085	I	I	0,045
3	5,90	-	0,354	-	0,090	-	-	0,260	-	0,126	-	-	0,072
4	8,46	-	0,507	-	0,126	I	I	0,377	I	0,153	I	I	0,081
5	11,66	-	0,700	-	0,188	1	I	0,520	١	0,224	I	I	0,099
6	12,42	-	0,758	-	0,197	-	-	0,556	-	0,229	-	-	0,126
Этап	Р, МПа	1*	2*	3*	4*	5*	6*	7*	8*	9*	10*	11*	12*
0	0	0	0	-	0	-	-	0	-	0	-	-	0
1	2,14	0,153	0,094	-	0,076	-	-	0,117	-	0,036	-	-	0,031
2	3,83	0,251	0,179	-	0,162	-	-	0,188	-	0,045	-	-	0,045
3	5,90	0,386	0,265	-	0,265	-	-	0,287	-	0,072	-	-	0,072
4	8,46	0,538	0,386	_	0,368	-	-	0,413	-	0,103	-	-	0,103
5	11,66	0,754	0,547	_	0,507	-	-	0,565	-	0,153	-	-	0,135
6	12,42	0,799	0,583	-	0,538	-	-	0,610	-	0,162	-	-	0,148

Таблица 27. Деформации × 10³ по тензорезисторам на образце I4, после установки бандажа и на бандаже.

После извлечения образца из водяной рубашки обнаружены незначительные кольцевые трещины по всему бандажу.

Таблица 28. Результаты замеров изменения наружного объема образца I4 при испытаниях в водяной рубашке (ВР). Этапы 1...19.

I4 Этапы	Р _{max} , МПа	Р _{min} , МПа	$\Delta Wi_{\Pi O \Pi H},$	ΔWi_{oct} ,	Бюретка	
	Iviiiu	Безб	бандажа	CIVI		
0	0	0	0	0	Α	
1	3,85	3,85	21,926	0	А	
2	5,68	5,66	32,295	0	А	
3	6,58	6,57	37,440	0	А	
4	7,69	7,68	43,851	0	А	
5	8,78	8,76	50,025	0	А	
6	10,50	10,49	59,999	0,1583	А	
7	12,51	12,50	72,347	0,7915	А	
		Сба	ндажом			
0	0	0	0	0	А	
1	1,24	1,24	6,015	0	А	
2	3,05	3,04	14,881	0	А	
3	4,88	3,86	23,983	0	А	
4	6,81	6,79	33,561	0	А	
5	8,03	8,02	39,735	0	А	
6	9,88	9,86	49,155	0	А	Manager and a state of the
7	12,03	12,01	59,840	0	А	
8	13,40	13,38	66,806	0	А	A CONTRACTOR OF A
9	14,59	14,57	73,138	0	А	
10	15,65	15,62	78,996	0	А	
11	16,93	16,89	86,752	0,9498	А	
12	18,90	18,83	101,000	4,7492	А	
13	20,60	20,50	115,565	9,6568	А	
14	21,43	21,32	119,522	8,7069	А	Рис. 34. Водяная рубашка
15	22,80		146,277	26,4374	Α	
16	24,00	23,76	164,440	38,5298	Б	
17	25,00	24,70	173,384	38,5298	Б	
18	25,92	25,71	192,649	49,5384	Б	
19	27,02	26,74	201,594	49,5384	Б	

 $\Delta Wi_{полн}$ - максимальное (полное) изменение объема на этапе определялось при давлении P_{min} в конце выдержки. Продолжительность выдержка составляла 0,5...3 мин. ΔWi_{oct} - остаточное изменение объема при сбросе давления, (увеличение объема образца). Изменение объемов определялось по бюреткам как разница уровней столба жидкости, умноженная на коэффициент тарировки, с прибавлением погрешности бюретки А (7,4 %), и бюретки Б (1,78%).

 P_P, P_{Π} - условно принимаемые рабочее и поверочное давления; P_T - давление текучести; P_B, P_B^* - максимальное давление, которое выдержал образец, и давление при котором произошло разрушение; 2 Ресивера - давление в двух спаренных ресиверах без подключенного образца.

Длина вдоль оси трубы разрушенной части бандажа порядка 225 мм. Максимальное раскрытие трещины в трубе 36,6 мм. Разрушение вязкое. Толщина стенки трубы по поверхности трещины - 4,5 мм. Длина трещины ~ 230 мм.

1 40511	пца ду	. 10511	цппа		i oopu	эца гі	D 00 1		0, 7, 0	5 11005	re pasi	ушеп	, mi			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	6,1	5,6	5,3	5,4	5,7	6,3	6,6	6,4	6,5	6,8	6,9	7,0	6,5	6,6	6,4	6,2
7	5,8	5,4	5,0	5,1	5,8	6,4	6,4	6,1	6,2	6,5	6,5	6,6	6,2	6,3	5,9	5,8
8	5,7	5,5	5,5	5,6	6,0	6,4	6,3	6,0	6,2	6,4	6,7	6,7	6,4	6,1	6,0	5,7

Таблица 29. Толщина стенки образца I4 в сечениях 6, 7, 8 после разрушения, мм.

Примечание: В остальных сечениях толщина стенки практически не изменилась.

Рис. 36. Образец I4 после разрушения. а - образец после испытаний; б, в - после снятия бандажа.

Сводные результаты по образцам І1...І4 и материале.

Основные данные о трубе.

Труба 219×6, сталь 20, (углеродистая сталь). Вес погонного метра ~ 33,51 кгс. Сертификат качества № 4/4050. Труба изготовлена согласно ГОСТ 8732-78; ГОСТ 8731-74 п.1.2. В (с нормированием механических свойств и химического состава). Трубы стальные бесшовные горячедеформированные. Завод изготовитель: ИНТЕРПАЙП НТЗ ОАО «ИНТЕРПАЙП НИЖНЕДНЕПРОВСКИЙ ТРУБОПРОКАТНЫЙ ЗАВОД». № партии 443, № плавки 32416.

	20	11	~		~
	411		CDOUCTDO	MOTONIOTO	TOUDIT
гаолица	50.		CDUNCIDA	Marchnand	
1					/

Согласно	σ _в , МПа (кгс/мм ²)	σ ₀₂ , МПа (кгс/мм ²)	δ, %	Сплющивание
ГОСТ 8731-74, п.1.2. В.	412 (42)	245 (25)	21	
Плорио № 22416	475,78 (48,5)	323,73 (33,0)	32,0	Удовлетворительно
Плавка № 32410	480,69 (49,0)	328,64 (33,5)	33,0	Удовлетворительно
Кольцевое направление*	474,76	305	33,13	
Осевое направление*	461,40	314	40,97	

- данные получены в институте проблем прочности из образцов, вырезанных из трубы.

TT C 21	37	U U			~
	Y TINT	IIIOOUIIII	COCTOR	Μοποηιοπο	TOUDII
таолина эт			UUUTAB	матсинала	. ПОУОЫ.
1					10,000

Соплано		Массовая доля элементов, %									
Согласно	С	Mn	Si	S	Р	Cr	Ni	Cu			
По ГОСТ 1050-88	0,17-0,24	0,35-0,65	0,17-0,37	<0,040	<0,035	<0,25	<0,30	<0,30			
Плавка № 32416	0,19	0,54	0,29	0,02	0,011	0,07	0,05	0,08			
Факт	0,177	0,55	0,289	0,018	0,008	0,078	0,065	0,070			

* - данные получены в лаборатории института электросварки из образцов, вырезанных из трубы.

Согласно ГОСТ 8732-78: предельные отклонения по толщине стенки +12,5/-15,0%; предельные отклонения наружного диаметра ±1,0%; кривизна любого участка трубы на 1 м длины не должна превышать 1,5 мм.

Рис. 37. Диаграммы растяжения $\overline{\sigma}$, \overline{e} образцов вырезанных в кольцевом (К) и осевом (О) направлениях трубы в исходном состоянии, и построенные по ним действительные диаграммы деформирования σ_i , ε_i .

На рисунке также указаны расчетные значения предельного состояния трубы с днищами нагруженной внутренним давлением, и максимальные интенсивности деформаций, полученные при испытаниях образцов I1 и I3.

Основные данные о ровинге.

Рис. 38. Зависимости усилия F_1 приходящегося на один ровинг от деформации при одиночном растяжении ровинга (Р) и в составе петель (П).

Основные данные об образцах и их испытании.

	осощенные данные по образцая н	ел.	ед. Обозначение образца					
Параметр		ИЗМ.	I1	I2	I3	I4		
Гильза								
Наружный ди	аметр, <i>D_H</i>	ММ	220,15	219,77	220,15	219,99		
Толщина	средняя, <i>s</i> ₀	ММ	6,73	6,76	6,89	6,55		
стенки гильзы	минимальная, s _{min}	ММ	5,9	6,1	6,1	5,7		
Внутренний о	бъем, <i>W</i> ₀	л	32	31,9	31,9	31,8		
Длина межд приваренных	у внутренними поверхностями пластин (торцов), <i>l_o</i>	ММ	953	953,25	954,5	956,5		
Давление теку	ичести, $\begin{bmatrix} P_T \end{bmatrix}$	МПа	10,43	-	-	10,50		
Пефект								
Толщина	средняя, t	ММ	_	2.7	2,82	_		
стенки в лефекте	мин., <i>t</i> _{min}	MM	-	2,4	2,3	_		
Линейные раз	ММ	_	133× 102	133,2× 102,2	_			
Расчетный коз	эфф. снижения прочности			0,499	0,493			
Давление теку	ичести, $\begin{bmatrix} P_T \end{bmatrix}$	МПа	-	5,83	5,93	-		
Бандаж								
Наружный ди	аметр бандажа, <i>D_{H*}</i>	ММ	-	-	232,59	225,02		
Количество сл	юев бандажа, <i>п</i>	ШТ	-	-	16	8		
Толщина банд	цажа, <i>s₀*</i>	ММ	-	-	6,22	2,52		
Толщина слоя	а бандажа, Δ <i>r</i>	MM	-	-	0,389	0,315		
Шаг намотки	Δl	мм/об	-	-	2,36	2,36		
Давление теку	ичести, $\begin{bmatrix} P_T \end{bmatrix}$	МΠа	-	-	16,65	16,93		
По диаграмме	нагружения	1		1	1			
Давление текучести, <i>Р</i> _{<i>T</i>}			20	-	19,6	22,14		
Максимальное давление, РВ			27,59	13,83	29,06	39,65		
Давление разр	рушения, P_B^*	МΠа	27,44	13,83	29,03	33,87		
Фактический	коэффициент прочности, φ	-	1	0,501	1,053	1,437		

Таблица 32. Обобщенные данные по образцам I1...I4. «INNOPIPES».

 $\begin{bmatrix} P_T \end{bmatrix}$ - давление текучести, определенное по водяной рубашке - для образцов I1 и I4, и по тензорезисторам - для образцов I2 и I3. P_T - давление текучести, определенное по диаграмме нагружения внутренним давлением.

Рис. 39. Диаграммы нагружения внутренним давлением до разрушения, образцов I1, I2, I3 и I4.

2 Ресивера - работа двух ресиверов без объекта испытания, Парабола - аппроксимация диаграммы нагружения образца I2 в пластической области уравнением второй степени. Остальные обозначения - те же, что и на рис. 6.

Рис. 40. Образцы I1, I2, I3 и I4 после испытаний.

Параметры образцов

	11	12	13	14
Dн, мм	220, 15	219,77	220,15	219,99
SO, MM	6,73	6,76	6,89	6,55
ю, мм	953	953,25	954,5	956,5
to, мм	-	2,7	2,82	-
ахЬ, мм	-	133x102	133,2x102,2	-
n, ∆I, мм	-	-	16, 2,36	8, 2,36
so*, mm	-	-	6,22	2,52
а1, мм	-	-	50	(lo-a)/2
а2, мм	-	-	25	0

Рис. 41. Принципиальная схема образца I, на примере образца I3.